chore(i18n,learn): processed translations (#45432)

This commit is contained in:
camperbot
2022-03-14 22:46:48 +05:30
committed by GitHub
parent 9a48c71ecf
commit d94177d85c
61 changed files with 592 additions and 335 deletions

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cc
title: Deep Learning Demystified
title: Deep Learning Desmitificado
challengeType: 11
videoId: bejQ-W9BGJg
dashedName: deep-learning-demystified
@ -10,23 +10,23 @@ dashedName: deep-learning-demystified
## --text--
How should you assign weights to input neurons before training your network for the first time?
¿Cómo deberías asignar pesos a las neuronas de entrada antes de entrenar tu red por primera vez?
## --answers--
From smallest to largest.
De más pequeño a más grande.
---
Completely randomly.
Completamente al azar.
---
Alphabetically.
Alfabéticamente.
---
None of the above.
Ninguna de las anteriores.
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cd
title: How Convolutional Neural Networks work
title: Cómo funcionan las Redes Neuronales Convolucionales
challengeType: 11
videoId: Y5M7KH4A4n4
dashedName: how-convolutional-neural-networks-work
@ -10,19 +10,19 @@ dashedName: how-convolutional-neural-networks-work
## --text--
When are Convolutional Neural Networks not useful?
¿Cuándo las Redes Neurales Convolucionales no son útiles?
## --answers--
If your data can't be made to look like an image, or if you can rearrange elements of your data and it's still just as useful.
Si tus datos no pueden ser hechos para parecer una imagen, o si puedes reorganizar elementos de tus datos y es igualmente útil.
---
If your data is made up of different 2D or 3D images.
Si sus datos se componen de diferentes imágenes 2D o 3D.
---
If your data is text or sound based.
Si sus datos son basados en texto o sonido.
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610ca
title: How Deep Neural Networks Work
title: Cómo Funcionan las Redes Neuronales Profundas
challengeType: 11
videoId: zvalnHWGtx4
dashedName: how-deep-neural-networks-work
@ -10,19 +10,19 @@ dashedName: how-deep-neural-networks-work
## --text--
Why is it better to calculate the gradient (slope) directly rather than numerically?
¿Por qué es mejor calcular la gradiente (pendiente) directamente que numéricamente?
## --answers--
It is computationally expensive to go back through the entire neural network and adjust the weights for each layer of the neural network.
Es computacionalmente caro volver a través de toda la red neuronal y ajustar los pesos para cada capa de la red neuronal.
---
It is more accurate.
Es más preciso.
---
There is no difference between the two methods.
No hay diferencia entre ambos métodos.
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cb
title: Recurrent Neural Networks RNN and Long Short Term Memory LSTM
title: Redes Neurales Recurrentes RNN y Memoria a Largo Plazo LSTM
challengeType: 11
videoId: UVimlsy9eW0
dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
@ -10,19 +10,19 @@ dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
## --text--
What are the main neural network components that make up a Long Short Term Memory network?
¿Cuáles son los principales componentes de la red neuronal que componen una red de memoria a largo plazo?
## --answers--
New information and prediction.
Nueva información y predicción.
---
Prediction, collected possibilities, and selection.
Predicción, posibilidades recolectadas y selección.
---
Prediction, ignoring, forgetting, and selection.
Predicción, ignoración, olvido, y selección.
## --video-solution--

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72d99
title: 'Convolutional Neural Networks: Evaluating the Model'
title: 'Redes Neurales Convolucionales: Evaluando el Modelo'
challengeType: 11
videoId: eCATNvwraXg
bilibiliIds:
aid: 933030136
bvid: BV1hM4y1g7Bx
cid: 409132265
dashedName: convolutional-neural-networks-evaluating-the-model
---
@ -10,19 +14,19 @@ dashedName: convolutional-neural-networks-evaluating-the-model
## --text--
What is **not** a good way to increase the accuracy of a convolutional neural network?
¿Qué **no** es una buena manera de incrementar la precisión de una red neuronal convolucional?
## --answers--
Augmenting the data you already have.
Aumentando los datos que ya tiene.
---
Using a pre-trained model.
Usando un model pre-entrenado.
---
Using your test data to retrain the model.
Usando tus datos de prueba para re entrenar el modelo.
## --video-solution--

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72d9a
title: 'Convolutional Neural Networks: Picking a Pretrained Model'
title: 'Redes Neuronales Convolucionales: Eligiendo un Modelo Pre-entrenado'
challengeType: 11
videoId: h1XUt1AgIOI
bilibiliIds:
aid: 463063633
bvid: BV1qL411x73q
cid: 409132626
dashedName: convolutional-neural-networks-picking-a-pretrained-model
---
@ -10,7 +14,7 @@ dashedName: convolutional-neural-networks-picking-a-pretrained-model
## --text--
Fill in the blanks below to use Google's pre-trained MobileNet V2 model as a base for a convolutional neural network:
Completa los siguientes espacios en blanco para utilizar el modelo pre-entrenado MobileNet V2 de Google como base para una red neuronal convolucional:
```py
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72da3
title: Reinforcement Learning With Q-Learning
title: Aprendizaje Reforzado con Q-Learning
challengeType: 11
videoId: Cf7DSU0gVb4
bilibiliIds:
aid: 463025802
bvid: BV1iL411x7L6
cid: 409138811
dashedName: reinforcement-learning-with-q-learning
---
@ -10,19 +14,19 @@ dashedName: reinforcement-learning-with-q-learning
## --text--
The key components of reinforcement learning are...
Los componente clave del Aprendizaje Reforzado son...
## --answers--
environment, representative, state, reaction, and reward.
entorno, representatividad, estado, reacción, y recompensa.
---
environment, agent, state, action, and reward.
entorno, agente, estado, acción, y recompensa.
---
habitat, agent, state, action, and punishment.
habitat, agente, estado, acción, y castigo.
## --video-solution--