chore(i18n,learn): processed translations (#45432)
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cc
|
||||
title: Deep Learning Demystified
|
||||
title: Deep Learning Desmitificado
|
||||
challengeType: 11
|
||||
videoId: bejQ-W9BGJg
|
||||
dashedName: deep-learning-demystified
|
||||
@ -10,23 +10,23 @@ dashedName: deep-learning-demystified
|
||||
|
||||
## --text--
|
||||
|
||||
How should you assign weights to input neurons before training your network for the first time?
|
||||
¿Cómo deberías asignar pesos a las neuronas de entrada antes de entrenar tu red por primera vez?
|
||||
|
||||
## --answers--
|
||||
|
||||
From smallest to largest.
|
||||
De más pequeño a más grande.
|
||||
|
||||
---
|
||||
|
||||
Completely randomly.
|
||||
Completamente al azar.
|
||||
|
||||
---
|
||||
|
||||
Alphabetically.
|
||||
Alfabéticamente.
|
||||
|
||||
---
|
||||
|
||||
None of the above.
|
||||
Ninguna de las anteriores.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cd
|
||||
title: How Convolutional Neural Networks work
|
||||
title: Cómo funcionan las Redes Neuronales Convolucionales
|
||||
challengeType: 11
|
||||
videoId: Y5M7KH4A4n4
|
||||
dashedName: how-convolutional-neural-networks-work
|
||||
@ -10,19 +10,19 @@ dashedName: how-convolutional-neural-networks-work
|
||||
|
||||
## --text--
|
||||
|
||||
When are Convolutional Neural Networks not useful?
|
||||
¿Cuándo las Redes Neurales Convolucionales no son útiles?
|
||||
|
||||
## --answers--
|
||||
|
||||
If your data can't be made to look like an image, or if you can rearrange elements of your data and it's still just as useful.
|
||||
Si tus datos no pueden ser hechos para parecer una imagen, o si puedes reorganizar elementos de tus datos y es igualmente útil.
|
||||
|
||||
---
|
||||
|
||||
If your data is made up of different 2D or 3D images.
|
||||
Si sus datos se componen de diferentes imágenes 2D o 3D.
|
||||
|
||||
---
|
||||
|
||||
If your data is text or sound based.
|
||||
Si sus datos son basados en texto o sonido.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610ca
|
||||
title: How Deep Neural Networks Work
|
||||
title: Cómo Funcionan las Redes Neuronales Profundas
|
||||
challengeType: 11
|
||||
videoId: zvalnHWGtx4
|
||||
dashedName: how-deep-neural-networks-work
|
||||
@ -10,19 +10,19 @@ dashedName: how-deep-neural-networks-work
|
||||
|
||||
## --text--
|
||||
|
||||
Why is it better to calculate the gradient (slope) directly rather than numerically?
|
||||
¿Por qué es mejor calcular la gradiente (pendiente) directamente que numéricamente?
|
||||
|
||||
## --answers--
|
||||
|
||||
It is computationally expensive to go back through the entire neural network and adjust the weights for each layer of the neural network.
|
||||
Es computacionalmente caro volver a través de toda la red neuronal y ajustar los pesos para cada capa de la red neuronal.
|
||||
|
||||
---
|
||||
|
||||
It is more accurate.
|
||||
Es más preciso.
|
||||
|
||||
---
|
||||
|
||||
There is no difference between the two methods.
|
||||
No hay diferencia entre ambos métodos.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cb
|
||||
title: Recurrent Neural Networks RNN and Long Short Term Memory LSTM
|
||||
title: Redes Neurales Recurrentes RNN y Memoria a Largo Plazo LSTM
|
||||
challengeType: 11
|
||||
videoId: UVimlsy9eW0
|
||||
dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
|
||||
@ -10,19 +10,19 @@ dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
|
||||
|
||||
## --text--
|
||||
|
||||
What are the main neural network components that make up a Long Short Term Memory network?
|
||||
¿Cuáles son los principales componentes de la red neuronal que componen una red de memoria a largo plazo?
|
||||
|
||||
## --answers--
|
||||
|
||||
New information and prediction.
|
||||
Nueva información y predicción.
|
||||
|
||||
---
|
||||
|
||||
Prediction, collected possibilities, and selection.
|
||||
Predicción, posibilidades recolectadas y selección.
|
||||
|
||||
---
|
||||
|
||||
Prediction, ignoring, forgetting, and selection.
|
||||
Predicción, ignoración, olvido, y selección.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72d99
|
||||
title: 'Convolutional Neural Networks: Evaluating the Model'
|
||||
title: 'Redes Neurales Convolucionales: Evaluando el Modelo'
|
||||
challengeType: 11
|
||||
videoId: eCATNvwraXg
|
||||
bilibiliIds:
|
||||
aid: 933030136
|
||||
bvid: BV1hM4y1g7Bx
|
||||
cid: 409132265
|
||||
dashedName: convolutional-neural-networks-evaluating-the-model
|
||||
---
|
||||
|
||||
@ -10,19 +14,19 @@ dashedName: convolutional-neural-networks-evaluating-the-model
|
||||
|
||||
## --text--
|
||||
|
||||
What is **not** a good way to increase the accuracy of a convolutional neural network?
|
||||
¿Qué **no** es una buena manera de incrementar la precisión de una red neuronal convolucional?
|
||||
|
||||
## --answers--
|
||||
|
||||
Augmenting the data you already have.
|
||||
Aumentando los datos que ya tiene.
|
||||
|
||||
---
|
||||
|
||||
Using a pre-trained model.
|
||||
Usando un model pre-entrenado.
|
||||
|
||||
---
|
||||
|
||||
Using your test data to retrain the model.
|
||||
Usando tus datos de prueba para re entrenar el modelo.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72d9a
|
||||
title: 'Convolutional Neural Networks: Picking a Pretrained Model'
|
||||
title: 'Redes Neuronales Convolucionales: Eligiendo un Modelo Pre-entrenado'
|
||||
challengeType: 11
|
||||
videoId: h1XUt1AgIOI
|
||||
bilibiliIds:
|
||||
aid: 463063633
|
||||
bvid: BV1qL411x73q
|
||||
cid: 409132626
|
||||
dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
||||
---
|
||||
|
||||
@ -10,7 +14,7 @@ dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
||||
|
||||
## --text--
|
||||
|
||||
Fill in the blanks below to use Google's pre-trained MobileNet V2 model as a base for a convolutional neural network:
|
||||
Completa los siguientes espacios en blanco para utilizar el modelo pre-entrenado MobileNet V2 de Google como base para una red neuronal convolucional:
|
||||
|
||||
```py
|
||||
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),
|
||||
|
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72da3
|
||||
title: Reinforcement Learning With Q-Learning
|
||||
title: Aprendizaje Reforzado con Q-Learning
|
||||
challengeType: 11
|
||||
videoId: Cf7DSU0gVb4
|
||||
bilibiliIds:
|
||||
aid: 463025802
|
||||
bvid: BV1iL411x7L6
|
||||
cid: 409138811
|
||||
dashedName: reinforcement-learning-with-q-learning
|
||||
---
|
||||
|
||||
@ -10,19 +14,19 @@ dashedName: reinforcement-learning-with-q-learning
|
||||
|
||||
## --text--
|
||||
|
||||
The key components of reinforcement learning are...
|
||||
Los componente clave del Aprendizaje Reforzado son...
|
||||
|
||||
## --answers--
|
||||
|
||||
environment, representative, state, reaction, and reward.
|
||||
entorno, representatividad, estado, reacción, y recompensa.
|
||||
|
||||
---
|
||||
|
||||
environment, agent, state, action, and reward.
|
||||
entorno, agente, estado, acción, y recompensa.
|
||||
|
||||
---
|
||||
|
||||
habitat, agent, state, action, and punishment.
|
||||
habitat, agente, estado, acción, y castigo.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
Reference in New Issue
Block a user