chore(i18n,learn): processed translations (#45432)
This commit is contained in:
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72d99
|
||||
title: 'Convolutional Neural Networks: Evaluating the Model'
|
||||
title: 'Redes Neurales Convolucionales: Evaluando el Modelo'
|
||||
challengeType: 11
|
||||
videoId: eCATNvwraXg
|
||||
bilibiliIds:
|
||||
aid: 933030136
|
||||
bvid: BV1hM4y1g7Bx
|
||||
cid: 409132265
|
||||
dashedName: convolutional-neural-networks-evaluating-the-model
|
||||
---
|
||||
|
||||
@ -10,19 +14,19 @@ dashedName: convolutional-neural-networks-evaluating-the-model
|
||||
|
||||
## --text--
|
||||
|
||||
What is **not** a good way to increase the accuracy of a convolutional neural network?
|
||||
¿Qué **no** es una buena manera de incrementar la precisión de una red neuronal convolucional?
|
||||
|
||||
## --answers--
|
||||
|
||||
Augmenting the data you already have.
|
||||
Aumentando los datos que ya tiene.
|
||||
|
||||
---
|
||||
|
||||
Using a pre-trained model.
|
||||
Usando un model pre-entrenado.
|
||||
|
||||
---
|
||||
|
||||
Using your test data to retrain the model.
|
||||
Usando tus datos de prueba para re entrenar el modelo.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72d9a
|
||||
title: 'Convolutional Neural Networks: Picking a Pretrained Model'
|
||||
title: 'Redes Neuronales Convolucionales: Eligiendo un Modelo Pre-entrenado'
|
||||
challengeType: 11
|
||||
videoId: h1XUt1AgIOI
|
||||
bilibiliIds:
|
||||
aid: 463063633
|
||||
bvid: BV1qL411x73q
|
||||
cid: 409132626
|
||||
dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
||||
---
|
||||
|
||||
@ -10,7 +14,7 @@ dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
||||
|
||||
## --text--
|
||||
|
||||
Fill in the blanks below to use Google's pre-trained MobileNet V2 model as a base for a convolutional neural network:
|
||||
Completa los siguientes espacios en blanco para utilizar el modelo pre-entrenado MobileNet V2 de Google como base para una red neuronal convolucional:
|
||||
|
||||
```py
|
||||
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),
|
||||
|
@ -1,8 +1,12 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72da3
|
||||
title: Reinforcement Learning With Q-Learning
|
||||
title: Aprendizaje Reforzado con Q-Learning
|
||||
challengeType: 11
|
||||
videoId: Cf7DSU0gVb4
|
||||
bilibiliIds:
|
||||
aid: 463025802
|
||||
bvid: BV1iL411x7L6
|
||||
cid: 409138811
|
||||
dashedName: reinforcement-learning-with-q-learning
|
||||
---
|
||||
|
||||
@ -10,19 +14,19 @@ dashedName: reinforcement-learning-with-q-learning
|
||||
|
||||
## --text--
|
||||
|
||||
The key components of reinforcement learning are...
|
||||
Los componente clave del Aprendizaje Reforzado son...
|
||||
|
||||
## --answers--
|
||||
|
||||
environment, representative, state, reaction, and reward.
|
||||
entorno, representatividad, estado, reacción, y recompensa.
|
||||
|
||||
---
|
||||
|
||||
environment, agent, state, action, and reward.
|
||||
entorno, agente, estado, acción, y recompensa.
|
||||
|
||||
---
|
||||
|
||||
habitat, agent, state, action, and punishment.
|
||||
habitat, agente, estado, acción, y castigo.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
Reference in New Issue
Block a user