chore(i18n,learn): processed translations (#45432)

This commit is contained in:
camperbot
2022-03-14 22:46:48 +05:30
committed by GitHub
parent 9a48c71ecf
commit d94177d85c
61 changed files with 592 additions and 335 deletions

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72d99
title: 'Convolutional Neural Networks: Evaluating the Model'
title: 'Redes Neurales Convolucionales: Evaluando el Modelo'
challengeType: 11
videoId: eCATNvwraXg
bilibiliIds:
aid: 933030136
bvid: BV1hM4y1g7Bx
cid: 409132265
dashedName: convolutional-neural-networks-evaluating-the-model
---
@ -10,19 +14,19 @@ dashedName: convolutional-neural-networks-evaluating-the-model
## --text--
What is **not** a good way to increase the accuracy of a convolutional neural network?
¿Qué **no** es una buena manera de incrementar la precisión de una red neuronal convolucional?
## --answers--
Augmenting the data you already have.
Aumentando los datos que ya tiene.
---
Using a pre-trained model.
Usando un model pre-entrenado.
---
Using your test data to retrain the model.
Usando tus datos de prueba para re entrenar el modelo.
## --video-solution--

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72d9a
title: 'Convolutional Neural Networks: Picking a Pretrained Model'
title: 'Redes Neuronales Convolucionales: Eligiendo un Modelo Pre-entrenado'
challengeType: 11
videoId: h1XUt1AgIOI
bilibiliIds:
aid: 463063633
bvid: BV1qL411x73q
cid: 409132626
dashedName: convolutional-neural-networks-picking-a-pretrained-model
---
@ -10,7 +14,7 @@ dashedName: convolutional-neural-networks-picking-a-pretrained-model
## --text--
Fill in the blanks below to use Google's pre-trained MobileNet V2 model as a base for a convolutional neural network:
Completa los siguientes espacios en blanco para utilizar el modelo pre-entrenado MobileNet V2 de Google como base para una red neuronal convolucional:
```py
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),

View File

@ -1,8 +1,12 @@
---
id: 5e8f2f13c4cdbe86b5c72da3
title: Reinforcement Learning With Q-Learning
title: Aprendizaje Reforzado con Q-Learning
challengeType: 11
videoId: Cf7DSU0gVb4
bilibiliIds:
aid: 463025802
bvid: BV1iL411x7L6
cid: 409138811
dashedName: reinforcement-learning-with-q-learning
---
@ -10,19 +14,19 @@ dashedName: reinforcement-learning-with-q-learning
## --text--
The key components of reinforcement learning are...
Los componente clave del Aprendizaje Reforzado son...
## --answers--
environment, representative, state, reaction, and reward.
entorno, representatividad, estado, reacción, y recompensa.
---
environment, agent, state, action, and reward.
entorno, agente, estado, acción, y recompensa.
---
habitat, agent, state, action, and punishment.
habitat, agente, estado, acción, y castigo.
## --video-solution--