chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,20 +1,20 @@
---
id: 5900f3ea1000cf542c50fefd
title: 问题126长方体层
title: 'Problem 126: Cuboid layers'
challengeType: 5
videoUrl: ''
forumTopicId: 301753
dashedName: problem-126-cuboid-layers
---
# --description--
覆盖尺寸为3 x 2 x 1的长方体上每个可见面的最小立方体数量为22。
The minimum number of cubes to cover every visible face on a cuboid measuring 3 x 2 x 1 is twenty-two.
如果我们在这个固体上添加第二层则需要四十六个立方体来覆盖每个可见面第三层需要七十八个立方体第四层需要一百一十八个立方体来覆盖每个可见面。然而尺寸为5 x 1 x 1的长方体上的第一层也需要22个立方体;类似地,尺寸为5 x 3 x 1,7 x 2 x 111 x 1 x 1的长方体上的第一层都包含四十六个立方体。我们将定义Cn来表示在其一个层中包含n个立方体的长方体的数量。因此C22= 2C46= 4C78= 5并且C118= 8.结果154是n的最小值其中Cn= 10。找到n的最小值其中Cn= 1000
If we then add a second layer to this solid it would require forty-six cubes to cover every visible face, the third layer would require seventy-eight cubes, and the fourth layer would require one-hundred and eighteen cubes to cover every visible face. However, the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes; similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1 all contain forty-six cubes. We shall define C(n) to represent the number of cuboids that contain n cubes in one of its layers. So C(22) = 2, C(46) = 4, C(78) = 5, and C(118) = 8. It turns out that 154 is the least value of n for which C(n) = 10. Find the least value of n for which C(n) = 1000.
# --hints--
`euler126()`应返回18522
`euler126()` should return 18522.
```js
assert.strictEqual(euler126(), 18522);