chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,20 +1,20 @@
|
||||
---
|
||||
id: 5900f3ea1000cf542c50fefd
|
||||
title: 问题126:长方体层
|
||||
title: 'Problem 126: Cuboid layers'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301753
|
||||
dashedName: problem-126-cuboid-layers
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
覆盖尺寸为3 x 2 x 1的长方体上每个可见面的最小立方体数量为22。
|
||||
The minimum number of cubes to cover every visible face on a cuboid measuring 3 x 2 x 1 is twenty-two.
|
||||
|
||||
如果我们在这个固体上添加第二层,则需要四十六个立方体来覆盖每个可见面,第三层需要七十八个立方体,第四层需要一百一十八个立方体来覆盖每个可见面。然而,尺寸为5 x 1 x 1的长方体上的第一层也需要22个立方体;类似地,尺寸为5 x 3 x 1,7 x 2 x 1和11 x 1 x 1的长方体上的第一层都包含四十六个立方体。我们将定义C(n)来表示在其一个层中包含n个立方体的长方体的数量。因此,C(22)= 2,C(46)= 4,C(78)= 5,并且C(118)= 8.结果,154是n的最小值,其中C(n)= 10。找到n的最小值,其中C(n)= 1000。
|
||||
If we then add a second layer to this solid it would require forty-six cubes to cover every visible face, the third layer would require seventy-eight cubes, and the fourth layer would require one-hundred and eighteen cubes to cover every visible face. However, the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes; similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1 all contain forty-six cubes. We shall define C(n) to represent the number of cuboids that contain n cubes in one of its layers. So C(22) = 2, C(46) = 4, C(78) = 5, and C(118) = 8. It turns out that 154 is the least value of n for which C(n) = 10. Find the least value of n for which C(n) = 1000.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler126()`应返回18522。
|
||||
`euler126()` should return 18522.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler126(), 18522);
|
||||
|
Reference in New Issue
Block a user