chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,32 +1,32 @@
---
id: 5900f4091000cf542c50ff1b
title: 问题156计数数字
title: 'Problem 156: Counting Digits'
challengeType: 5
videoUrl: ''
forumTopicId: 301787
dashedName: problem-156-counting-digits
---
# --description--
从零开始自然数字在基数10中写下如下所示
Starting from zero the natural numbers are written down in base 10 like this:
0 1 2 3 4 5 6 7 8 9 10 11 12 ....
0 1 2 3 4 5 6 7 8 9 10 11 12....
考虑数字d = 1。在我们写下每个数字n后我们将更新已发生的数字并将此数字称为fn1。那么fn1的第一个值如下
Consider the digit d=1. After we write down each number n, we will update the number of ones that have occurred and call this number f(n,1). The first values for f(n,1), then, are as follows:
nfn100 11 21 31 41 51 61 71 81 91 102 114 125
nf(n,1) 00 11 21 31 41 51 61 71 81 91 102 114 125
请注意fn1永远不等于3。
Note that f(n,1) never equals 3.
因此等式fn1= n的前两个解是n = 0并且n = 1。下一个解决方案是n = 199981。以相同的方式函数fnd给出在写入数字n之后已经写下的总位数d。
So the first two solutions of the equation f(n,1)=n are n=0 and n=1. The next solution is n=199981. In the same manner the function f(n,d) gives the total number of digits d that have been written down after the number n has been written.
实际上对于每个数字d≠0,0是方程fnd= n的第一个解。设sd是fnd= n的所有解的总和。
In fact, for every digit d ≠ 0, 0 is the first solution of the equation f(n,d)=n. Let s(d) be the sum of all the solutions for which f(n,d)=n.
你得到s1= 22786974071。找到Σsd的1≤d≤9。注意如果对于某些n对于多于一个d的值fnd= n对于d的每个值再次计算n的这个值。 FNd= N。
You are given that s(1)=22786974071. Find ∑ s(d) for 1 ≤ d ≤ 9. Note: if, for some n, f(n,d)=n for more than one value of d this value of n is counted again for every value of d for which f(n,d)=n.
# --hints--
`euler156`应该返回21295121502550
`euler156()` should return 21295121502550.
```js
assert.strictEqual(euler156(), 21295121502550);