chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,24 +1,26 @@
|
||||
---
|
||||
id: 5900f40d1000cf542c50ff20
|
||||
title: 问题161:Triominoes
|
||||
title: 'Problem 161: Triominoes'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301795
|
||||
dashedName: problem-161-triominoes
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
三角形是由三个通过边缘连接的正方形组成的形状。有两种基本形式:
|
||||
A triomino is a shape consisting of three squares joined via the edges.
|
||||
|
||||
如果考虑所有可能的方向,则有六个:
|
||||
There are two basic forms:
|
||||
|
||||
任何n×m网格的nxm可以被3整除,可以用三角形平铺。如果我们考虑通过反射或从另一个平铺旋转获得的倾斜不同,有41种方式可以使用三角形平铺2乘9的网格:
|
||||
If all possible orientations are taken into account there are six:
|
||||
|
||||
有多少种方式可以通过三角形以这种方式平铺9乘12的网格?
|
||||
Any n by m grid for which nxm is divisible by 3 can be tiled with triominoes. If we consider tilings that can be obtained by reflection or rotation from another tiling as different there are 41 ways a 2 by 9 grid can be tiled with triominoes:
|
||||
|
||||
In how many ways can a 9 by 12 grid be tiled in this way by triominoes?
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler161()`应该返回20574308184277972。
|
||||
`euler161()` should return 20574308184277972.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler161(), 20574308184277972);
|
||||
|
Reference in New Issue
Block a user