chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,36 +1,38 @@
|
||||
---
|
||||
id: 5900f4511000cf542c50ff63
|
||||
title: 问题228:Minkowski Sums
|
||||
title: 'Problem 228: Minkowski Sums'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301871
|
||||
dashedName: problem-228-minkowski-sums
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
设Sn是常规的n边多边形 - 或形状 - 其顶点
|
||||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
|
||||
|
||||
vk(k = 1,2,...,n)有坐标:
|
||||
Let Sn be the regular n-sided polygon – or shape – whose vertices
|
||||
|
||||
```
|
||||
xk = cos( 2k-1/n ×180° ) yk = sin( 2k-1/n ×180° )
|
||||
```
|
||||
vk (k = 1,2,…,n) have coordinates:
|
||||
|
||||
每个Sn都被解释为由周边和内部的所有点组成的填充形状。
|
||||
xk = cos( 2k-1/n ×180° )
|
||||
|
||||
两个形状S和T的Minkowski和S + T是结果
|
||||
yk = sin( 2k-1/n ×180° )
|
||||
|
||||
将S中的每个点添加到T中的每个点,其中以坐标方式执行点添加:
|
||||
Each Sn is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.
|
||||
|
||||
(u,v)+(x,y)=(u + x,v + y)。
|
||||
The Minkowski sum, S+T, of two shapes S and T is the result of
|
||||
|
||||
例如,S3和S4的总和是六边形,如下面粉红色所示:
|
||||
adding every point in S to every point in T, where point addition is performed coordinate-wise:
|
||||
|
||||
S1864 + S1865 + ... + S1909有多少方面?
|
||||
(u, v) + (x, y) = (u+x, v+y).
|
||||
|
||||
For example, the sum of S3 and S4 is the six-sided shape shown in pink below:
|
||||
|
||||
How many sides does S1864 + S1865 + … + S1909 have?
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler228()`应返回86226。
|
||||
`euler228()` should return 86226.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler228(), 86226);
|
||||
|
Reference in New Issue
Block a user