chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,24 +1,24 @@
---
id: 5900f45f1000cf542c50ff71
title: 问题242奇数三胞胎
title: 'Problem 242: Odd Triplets'
challengeType: 5
videoUrl: ''
forumTopicId: 301889
dashedName: problem-242-odd-triplets
---
# --description--
给定集合{1,2...n}我们将fnk定义为具有奇数元素之和的k元素子集的数量。例如f5,3= 4,因为集合{1,2,3,4,5}有四个3元素子集具有奇数元素{1,2,4}{ 1,3,5}{2,3,4}{2,4,5}
Given the set {1,2,...,n}, we define f(n,k) as the number of its k-element subsets with an odd sum of elements. For example, f(5,3) = 4, since the set {1,2,3,4,5} has four 3-element subsets having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.
当所有三个值nk和fnk都是奇数时我们说它们产生奇数三元组\[nkfnk]。
When all three values n, k and f(n,k) are odd, we say that they make an odd-triplet \[n,k,f(n,k)].
正好有五个奇数三元组n≤10\[1,1f1,1= 1]\[5,1f5,1= 3]\[5,5f 5,5= 1]\[9,1f9,1= 5]\[9,9f9,9= 1]
There are exactly five odd-triplets with n ≤ 10, namely: \[1,1,f(1,1) = 1], \[5,1,f(5,1) = 3], \[5,5,f(5,5) = 1], \[9,1,f(9,1) = 5] and \[9,9,f(9,9) = 1].
n≤1012有多少奇数三胞胎
How many odd-triplets are there with n ≤ 1012 ?
# --hints--
`euler242()`应该返回997104142249036700
`euler242()` should return 997104142249036700.
```js
assert.strictEqual(euler242(), 997104142249036700);