chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,24 +1,24 @@
|
||||
---
|
||||
id: 5900f45f1000cf542c50ff71
|
||||
title: 问题242:奇数三胞胎
|
||||
title: 'Problem 242: Odd Triplets'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301889
|
||||
dashedName: problem-242-odd-triplets
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
给定集合{1,2,...,n},我们将f(n,k)定义为具有奇数元素之和的k元素子集的数量。例如,f(5,3)= 4,因为集合{1,2,3,4,5}有四个3元素子集具有奇数元素,即:{1,2,4},{ 1,3,5},{2,3,4}和{2,4,5}。
|
||||
Given the set {1,2,...,n}, we define f(n,k) as the number of its k-element subsets with an odd sum of elements. For example, f(5,3) = 4, since the set {1,2,3,4,5} has four 3-element subsets having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.
|
||||
|
||||
当所有三个值n,k和f(n,k)都是奇数时,我们说它们产生奇数三元组\[n,k,f(n,k)]。
|
||||
When all three values n, k and f(n,k) are odd, we say that they make an odd-triplet \[n,k,f(n,k)].
|
||||
|
||||
正好有五个奇数三元组,n≤10,即:\[1,1,f(1,1)= 1],\[5,1,f(5,1)= 3],\[5,5,f (5,5)= 1],\[9,1,f(9,1)= 5]和\[9,9,f(9,9)= 1]。
|
||||
There are exactly five odd-triplets with n ≤ 10, namely: \[1,1,f(1,1) = 1], \[5,1,f(5,1) = 3], \[5,5,f(5,5) = 1], \[9,1,f(9,1) = 5] and \[9,9,f(9,9) = 1].
|
||||
|
||||
n≤1012,有多少奇数三胞胎?
|
||||
How many odd-triplets are there with n ≤ 1012 ?
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler242()`应该返回997104142249036700。
|
||||
`euler242()` should return 997104142249036700.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler242(), 997104142249036700);
|
||||
|
Reference in New Issue
Block a user