chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,28 +1,28 @@
---
id: 5900f4691000cf542c50ff7b
title: 问题252凸孔
title: 'Problem 252: Convex Holes'
challengeType: 5
videoUrl: ''
forumTopicId: 301900
dashedName: problem-252-convex-holes
---
# --description--
给定平面上的一组点,我们将凸孔定义为凸多边形,其具有作为顶点的任何给定点并且不包含其内部中的任何给定点(除了顶点之外,其他给定点可能位于在多边形的周长上)。
Given a set of points on a plane, we define a convex hole to be a convex polygon having as vertices any of the given points and not containing any of the given points in its interior (in addition to the vertices, other given points may lie on the perimeter of the polygon).
作为示例下面的图像示出了一组二十个点和一些这样的凸孔。显示为红色七边形的凸孔具有等于1049694.5平方单位的面积,这是给定点集上的凸孔的最高可能区域。
As an example, the image below shows a set of twenty points and a few such convex holes. The convex hole shown as a red heptagon has an area equal to 1049694.5 square units, which is the highest possible area for a convex hole on the given set of points.
对于我们的例子我们使用前20个点T2k-1T2k对于k = 1,2...20使用伪随机数生成器生成
For our example, we used the first 20 points (T2k1, T2k), for k = 1,2,…,20, produced with the pseudo-random number generator:
S0 = 290797 Sn + 1 = Sn2 mod 50515093 Tn =Sn mod 2000-1000
S0 = 290797 Sn+1 = Sn2 mod 50515093 Tn = ( Sn mod 2000 ) 1000
即(527,144 - 488,732 - 454-947......
i.e. (527, 144), (488, 732), (454, 947), …
包含伪随机序列中前500个点的集合上凸孔的最大面积是多少指定您的答案包括小数点后的一位数。
What is the maximum area for a convex hole on the set containing the first 500 points in the pseudo-random sequence? Specify your answer including one digit after the decimal point.
# --hints--
`euler252()`应该返回104924
`euler252()` should return 104924.
```js
assert.strictEqual(euler252(), 104924);