chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,28 +1,28 @@
---
id: 5900f4761000cf542c50ff88
title: 问题265二进制圆圈
title: 'Problem 265: Binary Circles'
challengeType: 5
videoUrl: ''
forumTopicId: 301914
dashedName: problem-265-binary-circles
---
# --description--
2N二进制数字可以放在一个圆圈中这样所有N位顺时针子序列都是不同的。
2N binary digits can be placed in a circle so that all the N-digit clockwise subsequences are distinct.
对于N = 3两个这样的圆形布置是可能的忽略旋转
For N=3, two such circular arrangements are possible, ignoring rotations:
对于第一种布置顺时针顺序的3位子序列是000,001,010,101,011,111,110100
For the first arrangement, the 3-digit subsequences, in clockwise order, are: 000, 001, 010, 101, 011, 111, 110 and 100.
通过将以全零的子序列开始的二进制数字连接为最高有效位并顺时针进行可以将每个循环排列编码为数字。因此N = 3的两种排列表示为23和2900010111 2 = 23 00011101 2 = 29
Each circular arrangement can be encoded as a number by concatenating the binary digits starting with the subsequence of all zeros as the most significant bits and proceeding clockwise. The two arrangements for N=3 are thus represented as 23 and 29: 00010111 2 = 23 00011101 2 = 29
调用SN唯一数值表示的总和我们可以看到S3= 23 + 29 = 52
Calling S(N) the sum of the unique numeric representations, we can see that S(3) = 23 + 29 = 52.
找到S5
Find S(5).
# --hints--
`euler265()`应该返回209110240768
`euler265()` should return 209110240768.
```js
assert.strictEqual(euler265(), 209110240768);