chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,20 +1,28 @@
|
||||
---
|
||||
id: 5900f47c1000cf542c50ff8e
|
||||
title: 问题270:切割方块
|
||||
title: 'Problem 270: Cutting Squares'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301920
|
||||
dashedName: problem-270-cutting-squares
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
放置具有整数尺寸N×N的正方形纸,在原点处具有拐角,并且沿x轴和y轴具有两个侧面。然后,我们按照以下规则进行切割:我们只在位于正方形不同侧面的两个点之间进行直线切割,并且具有整数坐标。两个切口不能交叉,但是几个切口可以在相同的边界点处相遇。继续进行,直到不再进行合法削减。将任何反射或旋转计数为不同,我们将C(N)称为切割N×N平方的方式的数量。例如,C(1)= 2且C(2)= 30(如下所示)。
|
||||
A square piece of paper with integer dimensions N×N is placed with a corner at the origin and two of its sides along the x- and y-axes. Then, we cut it up respecting the following rules:
|
||||
|
||||
什么是C(30)mod 108?
|
||||
We only make straight cuts between two points lying on different sides of the square, and having integer coordinates.
|
||||
|
||||
Two cuts cannot cross, but several cuts can meet at the same border point.
|
||||
|
||||
Proceed until no more legal cuts can be made.
|
||||
|
||||
Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N×N square. For example, C(1) = 2 and C(2) = 30 (shown below).
|
||||
|
||||
What is C(30) mod 108 ?
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler270()`应该返回82282080。
|
||||
`euler270()` should return 82282080.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler270(), 82282080);
|
||||
|
Reference in New Issue
Block a user