chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,20 +1,20 @@
---
id: 5900f47e1000cf542c50ff90
title: 问题273正方形的总和
title: 'Problem 273: Sum of Squares'
challengeType: 5
videoUrl: ''
forumTopicId: 301923
dashedName: problem-273-sum-of-squares
---
# --description--
考虑以下形式的方程a2 + b2 = N0≤a≤bab和N整数。
Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.
对于N = 65有两种解决方案a = 1b = 8a = 4b = 7。我们将SN称为a2 + b2 = N0≤a≤bab和N整数的所有解的a的值之和。因此S65= 1 + 4 = 5.找到ΣSN对于所有无平均N只能被4k + 1形式的素数整除其中4k + 1 <150
For N=65 there are two solutions: a=1, b=8 and a=4, b=7. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.
# --hints--
`euler273()`应该返回2032447591196869000
`euler273()` should return 2032447591196869000.
```js
assert.strictEqual(euler273(), 2032447591196869000);