chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,28 +1,28 @@
|
||||
---
|
||||
id: 5900f48d1000cf542c50ffa0
|
||||
title: 问题289:欧拉循环
|
||||
title: 'Problem 289: Eulerian Cycles'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301940
|
||||
dashedName: problem-289-eulerian-cycles
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
令C(x,y)为穿过点(x,y),(x,y + 1),(x + 1,y)和(x + 1,y + 1)的圆。
|
||||
Let C(x,y) be a circle passing through the points (x, y), (x, y+1), (x+1, y) and (x+1, y+1).
|
||||
|
||||
对于正整数m和n,令E(m,n)为由m·n个圆组成的配置: {C(x,y):0≤x <m,0≤y <n,x和y是整数}
|
||||
For positive integers m and n, let E(m,n) be a configuration which consists of the m·n circles: { C(x,y): 0 ≤ x < m, 0 ≤ y < n, x and y are integers }
|
||||
|
||||
E(m,n)上的欧拉循环是一条闭合路径,它恰好通过每个圆弧一次。 E(m,n)上可能有许多这样的路径,但是我们只对那些不会自交叉的路径感兴趣: 非相交路径仅在格点处触碰自身,但从未相交。
|
||||
An Eulerian cycle on E(m,n) is a closed path that passes through each arc exactly once. Many such paths are possible on E(m,n), but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself.
|
||||
|
||||
下图显示了E(3,3)和一个欧拉非交叉路径的示例。
|
||||
The image below shows E(3,3) and an example of an Eulerian non-crossing path.
|
||||
|
||||
令L(m,n)为E(m,n)上的欧拉非交叉路径数。 例如,L(1,2)= 2,L(2,2)= 37,L(3,3)= 104290。
|
||||
Let L(m,n) be the number of Eulerian non-crossing paths on E(m,n). For example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.
|
||||
|
||||
找出L(6,10)mod 1010。
|
||||
Find L(6,10) mod 1010.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler289()`应该返回6567944538。
|
||||
`euler289()` should return 6567944538.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler289(), 6567944538);
|
||||
|
Reference in New Issue
Block a user