chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,28 +1,28 @@
---
id: 5900f48d1000cf542c50ffa0
title: 问题289欧拉循环
title: 'Problem 289: Eulerian Cycles'
challengeType: 5
videoUrl: ''
forumTopicId: 301940
dashedName: problem-289-eulerian-cycles
---
# --description--
令Cxy为穿过点xyxy + 1x + 1yx + 1y + 1的圆。
Let C(x,y) be a circle passing through the points (x, y), (x, y+1), (x+1, y) and (x+1, y+1).
对于正整数m和n令Emn为由m·n个圆组成的配置 {Cxy0≤x <m0≤y <nx和y是整数}
For positive integers m and n, let E(m,n) be a configuration which consists of the m·n circles: { C(x,y): 0 ≤ x < m, 0 ≤ y < n, x and y are integers }
Emn上的欧拉循环是一条闭合路径它恰好通过每个圆弧一次。 Emn上可能有许多这样的路径但是我们只对那些不会自交叉的路径感兴趣 非相交路径仅在格点处触碰自身,但从未相交。
An Eulerian cycle on E(m,n) is a closed path that passes through each arc exactly once. Many such paths are possible on E(m,n), but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself.
下图显示了E3,3和一个欧拉非交叉路径的示例。
The image below shows E(3,3) and an example of an Eulerian non-crossing path.
令Lmn为Emn上的欧拉非交叉路径数。 例如L1,2= 2L2,2= 37L3,3= 104290
Let L(m,n) be the number of Eulerian non-crossing paths on E(m,n). For example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.
找出L6,10mod 1010
Find L(6,10) mod 1010.
# --hints--
`euler289()`应该返回6567944538
`euler289()` should return 6567944538.
```js
assert.strictEqual(euler289(), 6567944538);