chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,48 +1,48 @@
|
||||
---
|
||||
id: 5900f4ab1000cf542c50ffbd
|
||||
title: 问题318:2011个九
|
||||
title: 'Problem 318: 2011 nines'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301974
|
||||
dashedName: problem-318-2011-nines
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
考虑实数√2+√3。
|
||||
Consider the real number √2+√3.
|
||||
|
||||
当我们计算√2+√3的偶数幂时
|
||||
When we calculate the even powers of √2+√3
|
||||
|
||||
我们得到:
|
||||
we get:
|
||||
|
||||
(√2+√3)2 = 9.898979485566356 ...
|
||||
(√2+√3)2 = 9.898979485566356...
|
||||
|
||||
(√2+√3)4 = 97.98979485566356 ...
|
||||
(√2+√3)4 = 97.98979485566356...
|
||||
|
||||
(√2+√3)6 = 969.998969071069263 ...
|
||||
(√2+√3)6 = 969.998969071069263...
|
||||
|
||||
(√2+√3)8 = 9601.99989585502907 ...
|
||||
(√2+√3)8 = 9601.99989585502907...
|
||||
|
||||
(√2+√3)10 = 95049.999989479221 ...
|
||||
(√2+√3)10 = 95049.999989479221...
|
||||
|
||||
(√2+√3)12 = 940897.9999989371855 ...
|
||||
(√2+√3)12 = 940897.9999989371855...
|
||||
|
||||
(√2+√3)14 = 9313929.99999989263 ...
|
||||
(√2+√3)14 = 9313929.99999989263...
|
||||
|
||||
(√2+√3)16 = 92198401.99999998915 ...
|
||||
(√2+√3)16 = 92198401.99999998915...
|
||||
|
||||
这些幂的小数部分开头的连续九个数字似乎没有减少。 实际上,可以证明(√2+√3)2n的小数部分对于大n接近1。
|
||||
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n.
|
||||
|
||||
考虑形式为√p+√q的所有实数,其中p和q为正整数,且p <q,使得小数部分 (√p+√q)的2n对于大n接近1。
|
||||
Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n.
|
||||
|
||||
令C(p,q,n)为(√p+√q)2n的小数部分开头的连续九个数字。
|
||||
Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n.
|
||||
|
||||
令N(p,q)为n的最小值,以使C(p,q,n)≥2011。
|
||||
Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011.
|
||||
|
||||
求p + q≤2011的∑N(p,q)。
|
||||
Find ∑N(p,q) for p+q ≤ 2011.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler318()`应该返回709313889。
|
||||
`euler318()` should return 709313889.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler318(), 709313889);
|
||||
|
Reference in New Issue
Block a user