chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,48 +1,48 @@
---
id: 5900f4ab1000cf542c50ffbd
title: 问题3182011个九
title: 'Problem 318: 2011 nines'
challengeType: 5
videoUrl: ''
forumTopicId: 301974
dashedName: problem-318-2011-nines
---
# --description--
考虑实数√2+√3
Consider the real number √2+√3.
当我们计算√2+√3的偶数幂时
When we calculate the even powers of √2+√3
我们得到:
we get:
√2+√32 = 9.898979485566356 ...
(√2+√3)2 = 9.898979485566356...
√2+√34 = 97.98979485566356 ...
(√2+√3)4 = 97.98979485566356...
√2+√36 = 969.998969071069263 ...
(√2+√3)6 = 969.998969071069263...
√2+√38 = 9601.99989585502907 ...
(√2+√3)8 = 9601.99989585502907...
√2+√310 = 95049.999989479221 ...
(√2+√3)10 = 95049.999989479221...
√2+√312 = 940897.9999989371855 ...
(√2+√3)12 = 940897.9999989371855...
√2+√314 = 9313929.99999989263 ...
(√2+√3)14 = 9313929.99999989263...
√2+√316 = 92198401.99999998915 ...
(√2+√3)16 = 92198401.99999998915...
这些幂的小数部分开头的连续九个数字似乎没有减少。 实际上,可以证明(√2+√32n的小数部分对于大n接近1。
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n.
考虑形式为√p+√q的所有实数其中p和q为正整数且p <q使得小数部分 √p+√q的2n对于大n接近1。
Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n.
令Cpqn√p+√q2n的小数部分开头的连续九个数字。
Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n.
令Npq为n的最小值以使Cpqn2011
Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011.
求p + q≤2011的∑Npq
Find ∑N(p,q) for p+q ≤ 2011.
# --hints--
`euler318()`应该返回709313889
`euler318()` should return 709313889.
```js
assert.strictEqual(euler318(), 709313889);