chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,36 +1,34 @@
|
||||
---
|
||||
id: 5900f4b71000cf542c50ffc9
|
||||
title: 问题330:欧拉数
|
||||
title: 'Problem 330: Euler''s Number'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 301988
|
||||
dashedName: problem-330-eulers-number
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
为所有整数n定义了无限的实数序列a(n),如下所示:
|
||||
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
|
||||
|
||||
例如,a(0)= 11! + 12! + 13! + ... = e - 1 a(1)= e - 11! + 12! + 13! + ... = 2e - 3 a(2)= 2e - 31! + e - 12! + 13! + ... = 72 e - 6
|
||||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
|
||||
|
||||
e = 2.7182818 ......是欧拉常数。
|
||||
For example,a(0) = 11! + 12! + 13! + ... = e − 1 a(1) = e − 11! + 12! + 13! + ... = 2e − 3 a(2) = 2e − 31! + e − 12! + 13! + ... = 72 e − 6
|
||||
|
||||
可以证明a(n)是形式
|
||||
with e = 2.7182818... being Euler's constant.
|
||||
|
||||
```
|
||||
A(n) e + B(n)n! for integers A(n) and B(n).
|
||||
```
|
||||
It can be shown that a(n) is of the form
|
||||
|
||||
例如a(10)=
|
||||
A(n) e + B(n)n! for integers A(n) and B(n).
|
||||
|
||||
```
|
||||
328161643 e − 65269448610! .
|
||||
```
|
||||
For example a(10) =
|
||||
|
||||
求A(109)+ B(109)并给出答案mod 77 777 777。
|
||||
328161643 e − 65269448610!.
|
||||
|
||||
Find A(109) + B(109) and give your answer mod 77 777 777.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler330()`应该返回15955822。
|
||||
`euler330()` should return 15955822.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler330(), 15955822);
|
||||
|
Reference in New Issue
Block a user