chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,20 +1,28 @@
|
||||
---
|
||||
id: 5900f5061000cf542c510017
|
||||
title: 问题409:Nim Extreme
|
||||
title: 'Problem 409: Nim Extreme'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 302077
|
||||
dashedName: problem-409-nim-extreme
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
设n是正整数。考虑nim位置:有n个非空桩。每堆的尺寸小于2n。没有两个桩具有相同的尺寸。设W(n)是满足上述条件的获胜nim位置的数量(如果第一个玩家具有获胜策略,则获胜的位置)。例如,W(1)= 1,W(2)= 6,W(3)= 168,W(5)= 19764360,W(100)mod 1 000 000 007 = 384777056。
|
||||
Let n be a positive integer. Consider nim positions where:There are n non-empty piles.
|
||||
|
||||
求W(10 000 000)mod 1 000 000 007。
|
||||
Each pile has size less than 2n.
|
||||
|
||||
No two piles have the same size.
|
||||
|
||||
Let W(n) be the number of winning nim positions satisfying the above
|
||||
|
||||
conditions (a position is winning if the first player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360 and W(100) mod 1 000 000 007 = 384777056.
|
||||
|
||||
Find W(10 000 000) mod 1 000 000 007.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler409()`应该返回253223948。
|
||||
`euler409()` should return 253223948.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler409(), 253223948);
|
||||
|
Reference in New Issue
Block a user