chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,26 +1,26 @@
---
id: 5900f5081000cf542c510019
title: 问题411上坡路径
title: 'Problem 411: Uphill paths'
challengeType: 5
videoUrl: ''
forumTopicId: 302080
dashedName: problem-411-uphill-paths
---
# --description--
设n是正整数。假设坐标xy=2i mod n3i mod n的站点为0≤i≤2n。我们将考虑与同一站点具有相同坐标的站点。
Let n be a positive integer. Suppose there are stations at the coordinates (x, y) = (2i mod n, 3i mod n) for 0 ≤ i ≤ 2n. We will consider stations with the same coordinates as the same station.
我们希望形成从0,0nn的路径使得x和y坐标永不减少。设Sn是路径可以通过的最大站数。
We wish to form a path from (0, 0) to (n, n) such that the x and y coordinates never decrease. Let S(n) be the maximum number of stations such a path can pass through.
例如如果n = 22则有11个不同的站并且有效路径最多可以通过5个站。因此S22= 5.下面举例说明了一个最佳路径的例子:
For example, if n = 22, there are 11 distinct stations, and a valid path can pass through at most 5 stations. Therefore, S(22) = 5. The case is illustrated below, with an example of an optimal path:
还可以证实S123= 14并且S10000= 48
It can also be verified that S(123) = 14 and S(10000) = 48.
求1Σk≤30ΣSk5
Find ∑ S(k5) for 1 ≤ k ≤ 30.
# --hints--
`euler411()`应返回9936352
`euler411()` should return 9936352.
```js
assert.strictEqual(euler411(), 9936352);