chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,26 +1,26 @@
|
||||
---
|
||||
id: 5900f5081000cf542c510019
|
||||
title: 问题411:上坡路径
|
||||
title: 'Problem 411: Uphill paths'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 302080
|
||||
dashedName: problem-411-uphill-paths
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
设n是正整数。假设坐标(x,y)=(2i mod n,3i mod n)的站点为0≤i≤2n。我们将考虑与同一站点具有相同坐标的站点。
|
||||
Let n be a positive integer. Suppose there are stations at the coordinates (x, y) = (2i mod n, 3i mod n) for 0 ≤ i ≤ 2n. We will consider stations with the same coordinates as the same station.
|
||||
|
||||
我们希望形成从(0,0)到(n,n)的路径,使得x和y坐标永不减少。设S(n)是路径可以通过的最大站数。
|
||||
We wish to form a path from (0, 0) to (n, n) such that the x and y coordinates never decrease. Let S(n) be the maximum number of stations such a path can pass through.
|
||||
|
||||
例如,如果n = 22,则有11个不同的站,并且有效路径最多可以通过5个站。因此,S(22)= 5.下面举例说明了一个最佳路径的例子:
|
||||
For example, if n = 22, there are 11 distinct stations, and a valid path can pass through at most 5 stations. Therefore, S(22) = 5. The case is illustrated below, with an example of an optimal path:
|
||||
|
||||
还可以证实S(123)= 14并且S(10000)= 48。
|
||||
It can also be verified that S(123) = 14 and S(10000) = 48.
|
||||
|
||||
求1Σk≤30,ΣS(k5)。
|
||||
Find ∑ S(k5) for 1 ≤ k ≤ 30.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler411()`应返回9936352。
|
||||
`euler411()` should return 9936352.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler411(), 9936352);
|
||||
|
Reference in New Issue
Block a user