chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,28 +1,28 @@
---
id: 5900f5181000cf542c51002a
title: 问题427n序列
title: 'Problem 427: n-sequences'
challengeType: 5
videoUrl: ''
forumTopicId: 302097
dashedName: problem-427-n-sequences
---
# --description--
整数序列S = {si}如果具有n个元素则每个元素满足1≤si≤n则称为n序列。 因此总共有nn个不同的n序列。
A sequence of integers S = {si} is called an n-sequence if it has n elements and each element si satisfies 1 ≤ si ≤ n. Thus there are nn distinct n-sequences in total.
例如序列S = {1、5、5、10、7、7、7、2、3、7}是10个序列。
For example, the sequence S = {1, 5, 5, 10, 7, 7, 7, 2, 3, 7} is a 10-sequence.
对于任何序列S令LS为具有相同值的S的最长连续存在的长度。 例如对于上面给定的序列S由于三个连续的7LS= 3。
For any sequence S, let L(S) be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, L(S) = 3, because of the three consecutive 7's.
对于所有n序列S令fn= ∑ LS
Let f(n) = ∑ L(S) for all n-sequences S.
例如f3= 45f7= 1403689和f11= 481496895121
For example, f(3) = 45, f(7) = 1403689 and f(11) = 481496895121.
找出f7,500,000mod 1 000 009。
Find f(7 500 000) mod 1 000 000 009.
# --hints--
`euler427()`应该返回97138867
`euler427()` should return 97138867.
```js
assert.strictEqual(euler427(), 97138867);