chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,22 +1,24 @@
|
||||
---
|
||||
id: 5900f52a1000cf542c51003c
|
||||
title: 问题445:撤回A.
|
||||
title: 'Problem 445: Retractions A'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 302117
|
||||
dashedName: problem-445-retractions-a
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
对于每个整数n> 1,函数族fn,a,b由fn,a,b(x)≡ax+ b mod n定义为a,b,x整数和0
|
||||
For every integer n>1, the family of functions fn,a,b is defined
|
||||
|
||||
对于c = C(100 000,k),1≤k≤99999≡628701600(mod 1 000 000 007),给出ΣR(c)。 (C(n,k)是二项式系数)。
|
||||
by fn,a,b(x)≡ax+b mod n for a,b,x integer and 0
|
||||
|
||||
找到ΣR(c)得c = C(10 000 000,k),1≤k≤9999 999.给出你的答案模1 000 000 007。
|
||||
You are given that ∑ R(c) for c=C(100 000,k), and 1 ≤ k ≤99 999 ≡628701600 (mod 1 000 000 007). (C(n,k) is the binomial coefficient).
|
||||
|
||||
Find ∑ R(c) for c=C(10 000 000,k), and 1 ≤k≤ 9 999 999. Give your answer modulo 1 000 000 007.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler445()`应该返回659104042。
|
||||
`euler445()` should return 659104042.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler445(), 659104042);
|
||||
|
Reference in New Issue
Block a user