chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,32 +1,32 @@
|
||||
---
|
||||
id: 5900f53d1000cf542c510050
|
||||
title: 问题465:极地多边形
|
||||
title: 'Problem 465: Polar polygons'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 302140
|
||||
dashedName: problem-465-polar-polygons
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
多边形的内核由一组点定义,整个多边形的边界是可见的。我们将极坐标多边形定义为多边形,其原点严格包含在其内核中。
|
||||
The kernel of a polygon is defined by the set of points from which the entire polygon's boundary is visible. We define a polar polygon as a polygon for which the origin is strictly contained inside its kernel.
|
||||
|
||||
对于此问题,多边形可以具有共线的连续顶点。但是,多边形仍然不能具有自相交,并且不能具有零面积。
|
||||
For this problem, a polygon can have collinear consecutive vertices. However, a polygon still cannot have self-intersection and cannot have zero area.
|
||||
|
||||
例如,只有下面的第一个是极多边形(第二个,第三个和第四个的内核不严格包含原点,第五个根本没有内核):
|
||||
For example, only the first of the following is a polar polygon (the kernels of the second, third, and fourth do not strictly contain the origin, and the fifth does not have a kernel at all):
|
||||
|
||||
请注意,第一个多边形有三个连续的共线顶点。
|
||||
Notice that the first polygon has three consecutive collinear vertices.
|
||||
|
||||
令P(n)为极坐标多边形的数量,使得顶点(x,y)具有绝对值不大于n的整数坐标。
|
||||
Let P(n) be the number of polar polygons such that the vertices (x, y) have integer coordinates whose absolute values are not greater than n.
|
||||
|
||||
请注意,如果多边形具有不同的边集,即使它们包含相同的区域,也应该计为不同的多边形。例如,具有顶点\[(0,0),(0,3),(1,1),(3,0)]的多边形与具有顶点\[(0,0),(0,3)的多边形不同),(1,1),(3,0),(1,0)]。
|
||||
Note that polygons should be counted as different if they have different set of edges, even if they enclose the same area. For example, the polygon with vertices \[(0,0),(0,3),(1,1),(3,0)] is distinct from the polygon with vertices \[(0,0),(0,3),(1,1),(3,0),(1,0)].
|
||||
|
||||
例如,P(1)= 131,P(2)= 1648531,P(3)= 1099461296175,P(343)mod 1 000 000 007 = 937293740。
|
||||
For example, P(1) = 131, P(2) = 1648531, P(3) = 1099461296175 and P(343) mod 1 000 000 007 = 937293740.
|
||||
|
||||
求P(713)mod 1 000 000 007。
|
||||
Find P(713) mod 1 000 000 007.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler465()`应该返回585965659。
|
||||
`euler465()` should return 585965659.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler465(), 585965659);
|
||||
|
Reference in New Issue
Block a user