chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -1,30 +1,30 @@
|
||||
---
|
||||
id: 5900f54c1000cf542c51005e
|
||||
title: 问题478:混合物
|
||||
title: 'Problem 478: Mixtures'
|
||||
challengeType: 5
|
||||
videoUrl: ''
|
||||
forumTopicId: 302155
|
||||
dashedName: problem-478-mixtures
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
让我们考虑三种物质的混合物:A,B和C.混合物可以用其中A,B和C的量的比例来描述,即(a:b:c)。例如,由比例(2:3:5)描述的混合物含有20%A,30%B和50%C。
|
||||
Let us consider mixtures of three substances: A, B and C. A mixture can be described by a ratio of the amounts of A, B, and C in it, i.e., (a : b : c). For example, a mixture described by the ratio (2 : 3 : 5) contains 20% A, 30% B and 50% C.
|
||||
|
||||
出于这个问题的目的,我们不能将各个组分与混合物分开。但是,我们可以将不同量的不同混合物组合以形成具有新比例的混合物。
|
||||
For the purposes of this problem, we cannot separate the individual components from a mixture. However, we can combine different amounts of different mixtures to form mixtures with new ratios.
|
||||
|
||||
例如,假设我们有三种比例(3:0:2),(3:6:11)和(3:3:4)的混合物。通过混合10个单位的第一个,20个单位的第二个和30个单位的第三个,我们得到一个比例(6:5:9)的新混合物,因为:(10·3/5 + 20·3/20 + 30·3/10:10·0/5 + 20·6/20 + 30·3/10:10·2/5 + 20·11/20 + 30·4/10)=(18:15:27) =(6:5:9)
|
||||
For example, say we have three mixtures with ratios (3 : 0 : 2), (3 : 6 : 11) and (3 : 3 : 4). By mixing 10 units of the first, 20 units of the second and 30 units of the third, we get a new mixture with ratio (6 : 5 : 9), since: (10·3/5 + 20·3/20 + 30·3/10 : 10·0/5 + 20·6/20 + 30·3/10 : 10·2/5 + 20·11/20 + 30·4/10) = (18 : 15 : 27) = (6 : 5 : 9)
|
||||
|
||||
然而,使用相同的三种混合物,不可能形成比例(3:2:1),因为B的量总是小于C的量。
|
||||
However, with the same three mixtures, it is impossible to form the ratio (3 : 2 : 1), since the amount of B is always less than the amount of C.
|
||||
|
||||
设n是正整数。假设对于0≤a,b,c≤n和gcd(a,b,c)= 1的整数(a,b,c)的每三个,我们得到具有比率(a:b:c)的混合。设M(n)为所有这些混合物的集合。
|
||||
Let n be a positive integer. Suppose that for every triple of integers (a, b, c) with 0 ≤ a, b, c ≤ n and gcd(a, b, c) = 1, we have a mixture with ratio (a : b : c). Let M(n) be the set of all such mixtures.
|
||||
|
||||
例如,M(2)包含具有以下比率的19种混合物:{(0:0:1),(0:1:0),(0:1:1),(0:1:2),( 0:2:1),(1:0:0),(1:0:1),(1:0:2),(1:1:0),(1:1:1),(1: 1:2),(1:2:0),(1:2:1),(1:2:2),(2:0:1),(2:1:0),(2:1: 1),(2:1:2),(2:2:1)}。
|
||||
For example, M(2) contains the 19 mixtures with the following ratios: {(0 : 0 : 1), (0 : 1 : 0), (0 : 1 : 1), (0 : 1 : 2), (0 : 2 : 1), (1 : 0 : 0), (1 : 0 : 1), (1 : 0 : 2), (1 : 1 : 0), (1 : 1 : 1), (1 : 1 : 2), (1 : 2 : 0), (1 : 2 : 1), (1 : 2 : 2), (2 : 0 : 1), (2 : 1 : 0), (2 : 1 : 1), (2 : 1 : 2), (2 : 2 : 1)}.
|
||||
|
||||
令E(n)为M(n)的子集数,其可以产生具有比率(1:1:1)的混合物,即具有相等部分A,B和C的混合物。我们可以验证E(1) )= 103,E(2)= 520447,E(10)mod 118 = 82608406和E(500)mod 118 = 13801403.求E(10 000 000)mod 118。
|
||||
Let E(n) be the number of subsets of M(n) which can produce the mixture with ratio (1 : 1 : 1), i.e., the mixture with equal parts A, B and C. We can verify that E(1) = 103, E(2) = 520447, E(10) mod 118 = 82608406 and E(500) mod 118 = 13801403. Find E(10 000 000) mod 118.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler478()`应该返回59510340。
|
||||
`euler478()` should return 59510340.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler478(), 59510340);
|
||||
|
Reference in New Issue
Block a user