chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,30 +1,30 @@
---
id: 5900f54c1000cf542c51005e
title: 问题478混合物
title: 'Problem 478: Mixtures'
challengeType: 5
videoUrl: ''
forumTopicId: 302155
dashedName: problem-478-mixtures
---
# --description--
让我们考虑三种物质的混合物AB和C.混合物可以用其中AB和C的量的比例来描述abc。例如由比例235描述的混合物含有20A30B和50C。
Let us consider mixtures of three substances: A, B and C. A mixture can be described by a ratio of the amounts of A, B, and C in it, i.e., (a : b : c). For example, a mixture described by the ratio (2 : 3 : 5) contains 20% A, 30% B and 50% C.
出于这个问题的目的,我们不能将各个组分与混合物分开。但是,我们可以将不同量的不同混合物组合以形成具有新比例的混合物。
For the purposes of this problem, we cannot separate the individual components from a mixture. However, we can combine different amounts of different mixtures to form mixtures with new ratios.
例如假设我们有三种比例3023611334的混合物。通过混合10个单位的第一个20个单位的第二个和30个单位的第三个我们得到一个比例659的新混合物因为10·3/5 + 20·3/20 + 30·3/1010·0/5 + 20·6/20 + 30·3/1010·2/5 + 20·11/20 + 30·4/10=181527 =659
For example, say we have three mixtures with ratios (3 : 0 : 2), (3 : 6 : 11) and (3 : 3 : 4). By mixing 10 units of the first, 20 units of the second and 30 units of the third, we get a new mixture with ratio (6 : 5 : 9), since: (10·3/5 + 20·3/20 + 30·3/10 : 10·0/5 + 20·6/20 + 30·3/10 : 10·2/5 + 20·11/20 + 30·4/10) = (18 : 15 : 27) = (6 : 5 : 9)
然而使用相同的三种混合物不可能形成比例321因为B的量总是小于C的量。
However, with the same three mixtures, it is impossible to form the ratio (3 : 2 : 1), since the amount of B is always less than the amount of C.
设n是正整数。假设对于0≤abc≤n和gcdabc= 1的整数abc的每三个我们得到具有比率abc的混合。设Mn为所有这些混合物的集合。
Let n be a positive integer. Suppose that for every triple of integers (a, b, c) with 0 ≤ a, b, c ≤ n and gcd(a, b, c) = 1, we have a mixture with ratio (a : b : c). Let M(n) be the set of all such mixtures.
例如M2包含具有以下比率的19种混合物{001010011012 0211001011021101111 1212012112220121021 1212221}。
For example, M(2) contains the 19 mixtures with the following ratios: {(0 : 0 : 1), (0 : 1 : 0), (0 : 1 : 1), (0 : 1 : 2), (0 : 2 : 1), (1 : 0 : 0), (1 : 0 : 1), (1 : 0 : 2), (1 : 1 : 0), (1 : 1 : 1), (1 : 1 : 2), (1 : 2 : 0), (1 : 2 : 1), (1 : 2 : 2), (2 : 0 : 1), (2 : 1 : 0), (2 : 1 : 1), (2 : 1 : 2), (2 : 2 : 1)}.
令En为Mn的子集数其可以产生具有比率111的混合物即具有相等部分AB和C的混合物。我们可以验证E1 = 103E2= 520447E10mod 118 = 82608406和E500mod 118 = 13801403.求E10 000 000mod 118
Let E(n) be the number of subsets of M(n) which can produce the mixture with ratio (1 : 1 : 1), i.e., the mixture with equal parts A, B and C. We can verify that E(1) = 103, E(2) = 520447, E(10) mod 118 = 82608406 and E(500) mod 118 = 13801403. Find E(10 000 000) mod 118.
# --hints--
`euler478()`应该返回59510340
`euler478()` should return 59510340.
```js
assert.strictEqual(euler478(), 59510340);