chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,21 +1,41 @@
---
id: 5900f3a61000cf542c50feb9
title: 问题58螺旋素数
title: 'Problem 58: Spiral primes'
challengeType: 5
videoUrl: ''
forumTopicId: 302169
dashedName: problem-58-spiral-primes
---
# --description--
从1开始并以下列方式逆时针旋转形成边长为7的方形螺旋。 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 2643 44 45 46 47 48 49这是有趣的是奇数方块位于右下角但更有意思的是沿着两条对角线的13个数字中有8个是素数;也就是说比例为8 /13≈62。如果在上面的螺旋周围缠绕一个完整的新层则将形成具有边长9的方形螺旋。如果继续这个过程那么沿着两条对角线的素数比首先低于10的方形螺旋的边长是多少
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.
<div style='text-align: center;'>
<strong><span style='color: red;'>37</span></strong> 36 35 34 33 32 <strong><span style='color: red;'>31</span></strong><br>
38 <strong><span style='color: red;'>17</span></strong> 16 15 14 <strong><span style='color: red;'>13</span></strong> 30<br>
39 18  <strong><span style='color: red;'>5</span></strong>  4  <strong><span style='color: red;'>3</span></strong> 12 29<br>
40 19  6  1  2 11 28<br>
41 20  <strong><span style='color: red;'>7</span></strong>  8  9 10 27<br>
42 21 22 23 24 25 26<br>
<strong><span style='color: red;'>43</span></strong> 44 45 46 47 48 49<br>
</div>
It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%.
If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%?
# --hints--
`euler58()`应返回26241。
`spiralPrimes()` should return a number.
```js
assert.strictEqual(euler58(), 26241);
assert(typeof spiralPrimes() === 'number');
```
`spiralPrimes()` should return 26241.
```js
assert.strictEqual(spiralPrimes(), 26241);
```
# --seed--