chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,63 +1,45 @@
---
id: 5900f3ad1000cf542c50fec0
title: 问题65e的收敛
title: 'Problem 65: Convergents of e'
challengeType: 5
videoUrl: ''
forumTopicId: 302177
dashedName: problem-65-convergents-of-e
---
# --description--
2的平方根可以写成无限连续分数。
The square root of 2 can be written as an infinite continued fraction.
√2= 1 + 1
$\\sqrt{2} = 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + ...}}}}$
2 + 1
The infinite continued fraction can be written, $\\sqrt{2} = \[1; (2)]$ indicates that 2 repeats *ad infinitum*. In a similar way, $\\sqrt{23} = \[4; (1, 3, 1, 8)]$. It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for $\\sqrt{2}$.
2 + 1
$1 + \\dfrac{1}{2} = \\dfrac{3}{2}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2}} = \\dfrac{7}{5}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2}}} = \\dfrac{17}{12}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2}}}} = \\dfrac{41}{29}$
2 + 1
Hence the sequence of the first ten convergents for $\\sqrt{2}$ are:
2 + ......
$1, \\dfrac{3}{2}, \\dfrac{7}{5}, \\dfrac{17}{12}, \\dfrac{41}{29}, \\dfrac{99}{70}, \\dfrac{239}{169}, \\dfrac{577}{408}, \\dfrac{1393}{985}, \\dfrac{3363}{2378}, ...$
可以写出无限连续分数√2= \[1;2]2表示2无限重复。以类似的方式√23= \[4;1,3,1,8]。事实证明平方根的连续分数的部分值序列提供了最佳的有理近似。让我们考虑√2的收敛。
What is most surprising is that the important mathematical constant, $e = \[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, ... , 1, 2k, 1, ...]$. The first ten terms in the sequence of convergents for `e` are:
1 + 1 = 3/2
$2, 3, \\dfrac{8}{3}, \\dfrac{11}{4}, \\dfrac{19}{7}, \\dfrac{87}{32}, \\dfrac{106}{39}, \\dfrac{193}{71}, \\dfrac{1264}{465}, \\dfrac{1457}{536}, ...$
2
The sum of digits in the numerator of the 10<sup>th</sup> convergent is $1 + 4 + 5 + 7 = 17$.
1 + 1 = 7/5
2 + 1
2
1 + 1 = 17/12
2 + 1
2 + 1
2
1 + 1 = 41/29
2 + 1
2 + 1
2 + 1
2
因此√2的前十个收敛的序列是1,3 / 2,7 / 5,17 / 12,41 / 29,99 / 70,239 / 169,577 / 408,1333 / 985,3333 / 2378 ...最令人惊讶的是重要的数学常数e = \[2; 1,2,1,1,4,1,1,6,1......1,2k1......]。 e的会聚序列中的前十个项是2,3,8 / 3,11 / 4,19 / 7,87 / 32,106 / 39,193 / 71,1264 / 465,1457 / 536.... ..第10个收敛的分子中的数字之和为1 + 4 + 5 + 7 = 17。求e的连续分数的第100个收敛的分子中的位数之和。
Find the sum of digits in the numerator of the 100<sup>th</sup> convergent of the continued fraction for `e`.
# --hints--
`euler65()`应该返回272。
`convergentsOfE()` should return a number.
```js
assert.strictEqual(euler65(), 272);
assert(typeof convergentsOfE() === 'number');
```
`convergentsOfE()` should return 272.
```js
assert.strictEqual(convergentsOfE(), 272);
```
# --seed--