chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -1,48 +1,56 @@
---
id: 594810f028c0303b75339ad5
title: 和组合
title: Y combinator
challengeType: 5
videoUrl: ''
forumTopicId: 302345
dashedName: y-combinator
---
# --description--
<p>在严格的<a href='https://en.wikipedia.org/wiki/Functional programming' title='wp函数式编程'>函数编程</a><a href='https://en.wikipedia.org/wiki/lambda calculus' title='wplambda演算'>lambda演算中</a> 函数lambda表达式没有状态只允许引用封闭函数的参数。这排除了递归函数的通常定义其中函数与变量的状态相关联并且该变量的状态在函数体中使用。 </p><p> <a href='http://mvanier.livejournal.com/2897.html'>Y组合</a>器本身是一个无状态函数,当应用于另一个无状态函数时,它返回函数的递归版本。 Y组合器是这类函数中最简单的一种称为<a href='https://en.wikipedia.org/wiki/Fixed-point combinator' title='wp定点组合器'>定点组合器</a></p>任务: <pre> <code>Define the stateless Y combinator function and use it to compute &#x3C;a href="https://en.wikipedia.org/wiki/Factorial" title="wp: factorial">factorial&#x3C;/a>.</code> </pre><p> <code>factorial(N)</code>功能已经给你了。另见<a href='http://vimeo.com/45140590'>Jim Weirich功能编程中的冒险</a></p>
In strict [functional programming](https://en.wikipedia.org/wiki/Functional programming "wp: functional programming") and the [lambda calculus](https://en.wikipedia.org/wiki/lambda calculus "wp: lambda calculus"), functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The [Y combinator](https://mvanier.livejournal.com/2897.html) is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called [fixed-point combinators](https://en.wikipedia.org/wiki/Fixed-point combinator "wp: fixed-point combinator").
# --instructions--
Define the stateless Y combinator function and use it to compute [factorial](https://en.wikipedia.org/wiki/Factorial "wp: factorial"). The `factorial(N)` function is already given to you. **See also:**
<ul>
<li><a href="https://vimeo.com/45140590" target="_blank">Jim Weirich: Adventures in Functional Programming</a>.</li>
</ul>
# --hints--
Y必须返回一个函数
Y should return a function.
```js
assert.equal(typeof Y((f) => (n) => n), 'function');
```
factorial1必须返回1。
factorial(1) should return 1.
```js
assert.equal(factorial(1), 1);
```
factorial2必须返回2。
factorial(2) should return 2.
```js
assert.equal(factorial(2), 2);
```
factorial3必须返回6。
factorial(3) should return 6.
```js
assert.equal(factorial(3), 6);
```
factorial4必须返回24
factorial(4) should return 24.
```js
assert.equal(factorial(4), 24);
```
factorial10)必须返回3628800
factorial(10) should return 3628800.
```js
assert.equal(factorial(10), 3628800);