chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -0,0 +1,40 @@
|
||||
---
|
||||
id: 5900f4621000cf542c50ff74
|
||||
title: 'Problem 245: Coresilience'
|
||||
challengeType: 5
|
||||
forumTopicId: 301892
|
||||
dashedName: problem-245-coresilience
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4⁄11.
|
||||
|
||||
The resilience of a number d > 1 is then φ(d)d − 1 , where φ is Euler's totient function. We further define the coresilience of a number n > 1 as C(n)= n − φ(n)n − 1. The coresilience of a prime p is C(p) = 1p − 1. Find the sum of all composite integers 1 < n ≤ 2×1011, for which C(n) is a unit fraction.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler245()` should return 288084712410001.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler245(), 288084712410001);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler245() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler245();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user