chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -0,0 +1,44 @@
|
||||
---
|
||||
id: 5900f4891000cf542c50ff9b
|
||||
title: 'Problem 284: Steady Squares'
|
||||
challengeType: 5
|
||||
forumTopicId: 301935
|
||||
dashedName: problem-284-steady-squares
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
The 3-digit number 376 in the decimal numbering system is an example of numbers with the special property that its square ends with the same digits: 3762 = 141376. Let's call a number with this property a steady square.
|
||||
|
||||
Steady squares can also be observed in other numbering systems. In the base 14 numbering system, the 3-digit number c37 is also a steady square: c372 = aa0c37, and the sum of its digits is c+3+7=18 in the same numbering system. The letters a, b, c and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar to the hexadecimal numbering system.
|
||||
|
||||
For 1 ≤ n ≤ 9, the sum of the digits of all the n-digit steady squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares with leading 0's are not allowed.
|
||||
|
||||
Find the sum of the digits of all the n-digit steady squares in the base 14 numbering system for 1 ≤ n ≤ 10000 (decimal) and give your answer in the base 14 system using lower case letters where necessary.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler284()` should return 5a411d7b.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler284(), '5a411d7b');
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler284() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler284();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user