chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -0,0 +1,48 @@
|
||||
---
|
||||
id: 5900f48d1000cf542c50ffa0
|
||||
title: 'Problem 289: Eulerian Cycles'
|
||||
challengeType: 5
|
||||
forumTopicId: 301940
|
||||
dashedName: problem-289-eulerian-cycles
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Let C(x,y) be a circle passing through the points (x, y), (x, y+1), (x+1, y) and (x+1, y+1).
|
||||
|
||||
For positive integers m and n, let E(m,n) be a configuration which consists of the m·n circles: { C(x,y): 0 ≤ x < m, 0 ≤ y < n, x and y are integers }
|
||||
|
||||
An Eulerian cycle on E(m,n) is a closed path that passes through each arc exactly once. Many such paths are possible on E(m,n), but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself.
|
||||
|
||||
The image below shows E(3,3) and an example of an Eulerian non-crossing path.
|
||||
|
||||
Let L(m,n) be the number of Eulerian non-crossing paths on E(m,n). For example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.
|
||||
|
||||
Find L(6,10) mod 1010.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler289()` should return 6567944538.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler289(), 6567944538);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler289() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler289();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user