chore(i8n,learn): processed translations
This commit is contained in:
committed by
Mrugesh Mohapatra
parent
15047f2d90
commit
e5c44a3ae5
@ -0,0 +1,46 @@
|
||||
---
|
||||
id: 5900f5081000cf542c510019
|
||||
title: 'Problem 411: Uphill paths'
|
||||
challengeType: 5
|
||||
forumTopicId: 302080
|
||||
dashedName: problem-411-uphill-paths
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Let n be a positive integer. Suppose there are stations at the coordinates (x, y) = (2i mod n, 3i mod n) for 0 ≤ i ≤ 2n. We will consider stations with the same coordinates as the same station.
|
||||
|
||||
We wish to form a path from (0, 0) to (n, n) such that the x and y coordinates never decrease. Let S(n) be the maximum number of stations such a path can pass through.
|
||||
|
||||
For example, if n = 22, there are 11 distinct stations, and a valid path can pass through at most 5 stations. Therefore, S(22) = 5. The case is illustrated below, with an example of an optimal path:
|
||||
|
||||
It can also be verified that S(123) = 14 and S(10000) = 48.
|
||||
|
||||
Find ∑ S(k5) for 1 ≤ k ≤ 30.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler411()` should return 9936352.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler411(), 9936352);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler411() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler411();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user