chore(i8n,learn): processed translations

This commit is contained in:
Crowdin Bot
2021-02-06 04:42:36 +00:00
committed by Mrugesh Mohapatra
parent 15047f2d90
commit e5c44a3ae5
3274 changed files with 172122 additions and 14164 deletions

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72da6
title: Conclusion
challengeType: 11
videoId: LMNub5frQi4
dashedName: conclusion
---
# --question--
## --text--
Most people that are experts in AI or machine learning usually...:
## --answers--
have one specialization.
---
have many specializations.
---
have a deep understanding of many different frameworks.
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d99
title: 'Convolutional Neural Networks: Evaluating the Model'
challengeType: 11
videoId: eCATNvwraXg
dashedName: convolutional-neural-networks-evaluating-the-model
---
# --question--
## --text--
What is **not** a good way to increase the accuracy of a convolutional neural network?
## --answers--
Augmenting the data you already have.
---
Using a pre-trained model.
---
Using your test data to retrain the model.
## --video-solution--
3

View File

@ -0,0 +1,49 @@
---
id: 5e8f2f13c4cdbe86b5c72d9a
title: 'Convolutional Neural Networks: Picking a Pretrained Model'
challengeType: 11
videoId: h1XUt1AgIOI
dashedName: convolutional-neural-networks-picking-a-pretrained-model
---
# --question--
## --text--
Fill in the blanks below to use Google's pre-trained MobileNet V2 model as a base for a convolutional neural network:
```py
base_model = tf.__A__.applications.__B__(input_shape=(160, 160, 3),
include_top=__C__,
weights='imagenet'
)
```
## --answers--
A: `keras`
B: `MobileNetV2`
C: `False`
---
A: `Keras`
B: `MobileNetV2`
C: `True`
---
A: `keras`
B: `mobile_net_v2`
C: `False`
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d97
title: 'Convolutional Neural Networks: The Convolutional Layer'
challengeType: 11
videoId: LrdmcQpTyLw
dashedName: convolutional-neural-networks-the-convolutional-layer
---
# --question--
## --text--
What are the three main properties of each convolutional layer?
## --answers--
Input size, the number of filters, and the sample size of the filters.
---
Input size, input dimensions, and the color values of the input.
---
Input size, input padding, and stride.
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d96
title: Convolutional Neural Networks
challengeType: 11
videoId: _1kTP7uoU9E
dashedName: convolutional-neural-networks
---
# --question--
## --text--
Dense neural networks analyze input on a global scale and recognize patterns in specific areas. Convolutional neural networks...:
## --answers--
also analyze input globally and extract features from specific areas.
---
do not work well for image classification or object detection.
---
scan through the entire input a little at a time and learn local patterns.
## --video-solution--
3

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d8e
title: 'Core Learning Algorithms: Building the Model'
challengeType: 11
videoId: 5wHw8BTd2ZQ
dashedName: core-learning-algorithms-building-the-model
---
# --question--
## --text--
What kind of estimator/model does TensorFlow recommend using for classification?
## --answers--
`LinearClassifier`
---
`DNNClassifier`
---
`BoostedTreesClassifier`
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d8d
title: 'Core Learning Algorithms: Classification'
challengeType: 11
videoId: qFF7ZQNvK9E
dashedName: core-learning-algorithms-classification
---
# --question--
## --text--
What is classification?
## --answers--
The process of separating data points into different classes.
---
Predicting a numeric value or forecast based on independent and dependent variables.
---
None of the above.
## --video-solution--
1

View File

@ -0,0 +1,38 @@
---
id: 5e8f2f13c4cdbe86b5c72d8f
title: 'Core Learning Algorithms: Clustering'
challengeType: 11
videoId: 8sqIaHc9Cz4
dashedName: core-learning-algorithms-clustering
---
# --question--
## --text--
Which of the following steps is **not** part of the K-Means algorithm?
## --answers--
Randomly pick K points to place K centeroids.
---
Assign each K point to the closest K centeroid.
---
Move each K centeroid into the middle of all of their data points.
---
Shuffle the K points so they're redistributed randomly.
---
Reassign each K point to the closest K centeroid.
## --video-solution--
4

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d90
title: 'Core Learning Algorithms: Hidden Markov Models'
challengeType: 11
videoId: IZg24y4wEPY
dashedName: core-learning-algorithms-hidden-markov-models
---
# --question--
## --text--
What makes a Hidden Markov model different than linear regression or classification?
## --answers--
It uses probability distributions to predict future events or states.
---
It analyzes the relationship between independent and dependent variables to make predictions.
---
It separates data points into separate categories.
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d8c
title: 'Core Learning Algorithms: The Training Process'
challengeType: 11
videoId: _cEwvqVoBhI
dashedName: core-learning-algorithms-the-training-process
---
# --question--
## --text--
What are epochs?
## --answers--
The number of times the model will see the same data.
---
A type of graph.
---
The number of elements you feed to the model at once.
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d8b
title: 'Core Learning Algorithms: Training and Testing Data'
challengeType: 11
videoId: wz9J1slsi7I
dashedName: core-learning-algorithms-training-and-testing-data
---
# --question--
## --text--
What is categorical data?
## --answers--
Another term for one-hot encoding.
---
Any data that is not numeric.
---
Any data that is represented numerically.
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d91
title: 'Core Learning Algorithms: Using Probabilities to make Predictions'
challengeType: 11
videoId: fYAYvLUawnc
dashedName: core-learning-algorithms-using-probabilities-to-make-predictions
---
# --question--
## --text--
What TensorFlow module should you import to implement `.HiddenMarkovModel()`?
## --answers--
`tensorflow.keras`
---
`tensorflow_gpu`
---
`tensorflow_probability`
## --video-solution--
3

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d8a
title: 'Core Learning Algorithms: Working with Data'
challengeType: 11
videoId: u85IOSsJsPI
dashedName: core-learning-algorithms-working-with-data
---
# --question--
## --text--
What does the pandas `.head()` function do?
## --answers--
Returns the number of entries in a data frame.
---
Returns the number of columns in a data frame.
---
By default, shows the first five rows or entries in a data frame.
## --video-solution--
3

View File

@ -0,0 +1,36 @@
---
id: 5e8f2f13c4cdbe86b5c72d89
title: Core Learning Algorithms
challengeType: 11
videoId: u5lZURgcWnU
dashedName: core-learning-algorithms
---
# --question--
## --text--
Which type of analysis would be best suited for the following problem?:
You have the average temperature in the month of March for the last 100 years. Using this data, you want to predict the average temperature in the month of March 5 years from now.
## --answers--
Multiple regression
---
Correlation
---
Decision tree
---
Linear regression
## --video-solution--
4

View File

@ -0,0 +1,52 @@
---
id: 5e8f2f13c4cdbe86b5c72d98
title: Creating a Convolutional Neural Network
challengeType: 11
videoId: kfv0K8MtkIc
dashedName: creating-a-convolutional-neural-network
---
# --question--
## --text--
Fill in the blanks below to complete the architecture for a convolutional neural network:
```py
model = models.__A__()
model.add(layers.__B__(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.__C__(2, 2))
model.add(layers.__B__(64, (3, 3), activation='relu'))
model.add(layers.__C__(2, 2))
model.add(layers.__B__(32, (3, 3), activation='relu'))
model.add(layers.__C__(2, 2))
```
## --answers--
A: `Sequential`
B: `add`
C: `Wrapper`
---
A: `keras`
B: `Cropping2D`
C: `AlphaDropout`
---
A: `Sequential`
B: `Conv2D`
C: `MaxPooling2D`
## --video-solution--
3

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d87
title: 'Introduction: Machine Learning Fundamentals'
challengeType: 11
videoId: KwL1qTR5MT8
dashedName: introduction-machine-learning-fundamentals
---
# --question--
## --text--
Which statement below is **false**?
## --answers--
Neural networks are modeled after the way the human brain works.
---
Computer programs that play tic-tac-toe or chess against human players are examples of simple artificial intelligence.
---
Machine learning is a subset of artificial intelligence.
## --video-solution--
1

View File

@ -0,0 +1,38 @@
---
id: 5e8f2f13c4cdbe86b5c72d88
title: Introduction to TensorFlow
challengeType: 11
videoId: r9hRyGGjOgQ
dashedName: introduction-to-tensorflow
---
# --question--
## --text--
Which of the following is **not** a type of tensor?
## --answers--
Variable
---
Flowing
---
Placeholder
---
SparseTensor
---
Constant
## --video-solution--
2

View File

@ -0,0 +1,62 @@
---
id: 5e8f2f13c4cdbe86b5c72da1
title: 'Natural Language Processing With RNNs: Building the Model'
challengeType: 11
videoId: 32WBFS7lfsw
dashedName: natural-language-processing-with-rnns-building-the-model
---
# --question--
## --text--
Fill in the blanks below to complete the `build_model` function:
```py
def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size,
embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.__A__(rnn_units,
return_sequences=__B__,
recurrent_initializer='glorot_uniform),
tf.keras.layers.Dense(__C__)
])
__D__
```
## --answers--
A: `ELU`
B: `True`
C: `vocab_size`
D: `return model`
---
A: `LSTM`
B: `False`
C: `batch_size`
D: `return model`
---
A: `LSTM`
B: `True`
C: `vocab_size`
D: `return model`
## --video-solution--
3

View File

@ -0,0 +1,40 @@
---
id: 5e8f2f13c4cdbe86b5c72da0
title: 'Natural Language Processing With RNNs: Create a Play Generator'
challengeType: 11
videoId: j5xsxjq_Xk8
dashedName: natural-language-processing-with-rnns-create-a-play-generator
---
# --question--
## --text--
Fill in the blanks below to create the training examples for the RNN:
```py
char_dataset = tf.data.__A__.__B__(text_as_int)
```
## --answers--
A: `DataSet`
B: `from_tensor_slices`
---
A: `data`
B: `from_tensors`
---
A: `DataSet`
B: `from_generator`
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d9f
title: 'Natural Language Processing With RNNs: Making Predictions'
challengeType: 11
videoId: WO1hINnBj20
dashedName: natural-language-processing-with-rnns-making-predictions
---
# --question--
## --text--
Before you make a prediction with your own review, you should...:
## --answers--
decode the training dataset and compare the results to the test data.
---
use the encodings from the training dataset to encode your review.
---
assign random values between 0 and the maximum number of vocabulary in your dataset to each word in your review.
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d9c
title: 'Natural Language Processing With RNNs: Part 2'
challengeType: 11
videoId: mUU9YXOFbZg
dashedName: natural-language-processing-with-rnns-part-2
---
# --question--
## --text--
Word embeddings are...:
## --answers--
an unordered group of encoded words that describes the frequency of words in a given document.
---
a group of encoded words that preserves the original order of the words in a given document.
---
a vectorized representation of words in a given document that places words with similar meanings near each other.
## --video-solution--
3

View File

@ -0,0 +1,34 @@
---
id: 5e8f2f13c4cdbe86b5c72d9d
title: 'Natural Language Processing With RNNs: Recurring Neural Networks'
challengeType: 11
videoId: bX5681NPOcA
dashedName: natural-language-processing-with-rnns-recurring-neural-networks
---
# --question--
## --text--
What is true about Recurrent Neural Networks?
## --answers--
1: They are a type of feed-forward neural network.
---
2: They maintain an internal memory/state of the input that was already processed.
---
3: RNN's contain a loop and process one piece of input at a time.
---
4: Both 2 and 3.
## --video-solution--
4

View File

@ -0,0 +1,50 @@
---
id: 5e8f2f13c4cdbe86b5c72d9e
title: 'Natural Language Processing With RNNs: Sentiment Analysis'
challengeType: 11
videoId: lYeLtu8Nq7c
dashedName: natural-language-processing-with-rnns-sentiment-analysis
---
# --question--
## --text--
Fill in the blanks below to create the model for the RNN:
```py
model = __A__.keras.Sequential([
__A__.keras.layers.__B__(88584, 32),
__A__.keras.layers.__C__(32),
__A__.keras.layers.DENSE(1, activation='sigmoid')
])
```
## --answers--
A: `tensor_flow`
B: `embedding`
C: `LSTM`
---
A: `tf`
B: `Embedding`
C: `AlphaDropout`
---
A: `tf`
B: `Embedding`
C: `LSTM`
## --video-solution--
3

View File

@ -0,0 +1,54 @@
---
id: 5e8f2f13c4cdbe86b5c72da2
title: 'Natural Language Processing With RNNs: Training the Model'
challengeType: 11
videoId: hEUiK7j9UI8
dashedName: natural-language-processing-with-rnns-training-the-model
---
# --question--
## --text--
Fill in the blanks below to save your model's checkpoints in the `./checkpoints` directory and call the latest checkpoint for training:
```py
checkpoint_dir = __A__
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
checkpoint_callback = tf.keras.callbacks.__B__(
filepath=checkpoint_prefix,
save_weights_only=True
)
history = model.fit(data, epochs=2, callbacks=[__C__])
```
## --answers--
A: `'./training_checkpoints'`
B: `ModelCheckpoint`
C: `checkpoint_prefix`
---
A: `'./checkpoints'`
B: `ModelCheckpoint`
C: `checkpoint_callback`
---
A: `'./checkpoints'`
B: `BaseLogger`
C: `checkpoint_callback`
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d9b
title: Natural Language Processing With RNNs
challengeType: 11
videoId: ZyCaF5S-lKg
dashedName: natural-language-processing-with-rnns
---
# --question--
## --text--
Natural Language Processing is a branch of artificial intelligence that...:
## --answers--
deals with how computers understand and process natural/human languages.
---
translates image data into natural/human languages.
---
is focused on translating computer languages into natural/human languages.
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d93
title: 'Neural Networks: Activation Functions'
challengeType: 11
videoId: S45tqW6BqRs
dashedName: neural-networks-activation-functions
---
# --question--
## --text--
Which activation function switches values between -1 and 1?
## --answers--
ReLU (Rectified Linear Unit)
---
Tanh (Hyperbolic Tangent)
---
Sigmoid
## --video-solution--
2

View File

@ -0,0 +1,50 @@
---
id: 5e8f2f13c4cdbe86b5c72d95
title: 'Neural Networks: Creating a Model'
challengeType: 11
videoId: K8bz1bmOCTw
dashedName: neural-networks-creating-a-model
---
# --question--
## --text--
Fill in the blanks below to build a sequential model of dense layers:
```py
model = __A__.__B__([
__A__.layers.Flatten(input_shape=(28, 28)),
__A__.layers.__C__(128, activation='relu'),
__A__.layers.__C__(10, activation='softmax')
])
```
## --answers--
A: `keras`
B: `Sequential`
C: `Dense`
---
A: `tf`
B: `Sequential`
C: `Categorical`
---
A: `keras`
B: `sequential`
C: `dense`
## --video-solution--
1

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d94
title: 'Neural Networks: Optimizers'
challengeType: 11
videoId: hdOtRPQe1o4
dashedName: neural-networks-optimizers
---
# --question--
## --text--
What is an optimizer function?
## --answers--
A function that increases the accuracy of a model's predictions.
---
A function that implements the gradient descent and backpropagation algorithms for you.
---
A function that reduces the time a model needs to train.
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72d92
title: Neural Networks with TensorFlow
challengeType: 11
videoId: uisdfrNrZW4
dashedName: neural-networks-with-tensorflow
---
# --question--
## --text--
A densely connected neural network is one in which...:
## --answers--
all the neurons in the current layer are connected to one neuron in the previous layer.
---
all the neurons in each layer are connected randomly.
---
all the neurons in the current layer are connected to every neuron in the previous layer.
## --video-solution--
3

View File

@ -0,0 +1,46 @@
---
id: 5e8f2f13c4cdbe86b5c72da5
title: 'Reinforcement Learning With Q-Learning: Example'
challengeType: 11
videoId: RBBSNta234s
dashedName: reinforcement-learning-with-q-learning-example
---
# --question--
## --text--
Fill in the blanks to complete the following Q-Learning equation:
```py
Q[__A__, __B__] = Q[__A__, __B__] + LEARNING_RATE * (reward + GAMMA * np.max(Q[__C__, :]) - Q[__A__, __B__])
```
## --answers--
A: `state`
B: `action`
C: `next_state`
---
A: `state`
B: `action`
C: `prev_state`
---
A: `state`
B: `reaction`
C: `next_state`
## --video-solution--
1

View File

@ -0,0 +1,26 @@
---
id: 5e8f2f13c4cdbe86b5c72da4
title: 'Reinforcement Learning With Q-Learning: Part 2'
challengeType: 11
videoId: DX7hJuaUZ7o
dashedName: reinforcement-learning-with-q-learning-part-2
---
# --question--
## --text--
What can happen if the agent does not have a good balance of taking random actions and using learned actions?
## --answers--
The agent will always try to minimize its reward for the current state/action, leading to local minima.
---
The agent will always try to maximize its reward for the current state/action, leading to local maxima.
## --video-solution--
2

View File

@ -0,0 +1,30 @@
---
id: 5e8f2f13c4cdbe86b5c72da3
title: Reinforcement Learning With Q-Learning
challengeType: 11
videoId: Cf7DSU0gVb4
dashedName: reinforcement-learning-with-q-learning
---
# --question--
## --text--
The key components of reinforcement learning are...
## --answers--
environment, representative, state, reaction, and reward.
---
environment, agent, state, action, and reward.
---
habitat, agent, state, action, and punishment.
## --video-solution--
2