chore(i18n,learn): processed translations (#44805)

This commit is contained in:
camperbot
2022-01-17 20:05:14 +05:30
committed by GitHub
parent 401cd86076
commit ea344a5f9b
3 changed files with 33 additions and 46 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f4b71000cf542c50ffc9
title: 'Problem 330: Euler''s Number'
title: '問題 330歐拉數'
challengeType: 5
forumTopicId: 301988
dashedName: problem-330-eulers-number
@ -8,30 +8,28 @@ dashedName: problem-330-eulers-number
# --description--
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
對於所有的整數 $n$,一個無限實數序列 $a(n)$ 定義如下:
<!-- TODO Use MathJax and re-write from projecteuler.net -->
$$ a(n) = \begin{cases} 1 & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
For example,a(0) = 11! + 12! + 13! + ... = e 1 a(1) = e 11! + 12! + 13! + ... = 2e 3 a(2) = 2e 31! + e 12! + 13! + ... = 72 e 6
例如
with e = 2.7182818... being Euler's constant.
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e 1 \\\\ & a(1) = \frac{e 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e 3 \\\\ & a(2) = \frac{2e 3}{1!} + \frac{e 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e 6 \end{align}$$
It can be shown that a(n) is of the form
其中$e = 2.7182818\ldots$ 是歐拉常數
A(n) e + B(n)n! for integers A(n) and B(n).
可以看出$a(n)$ 可以寫成 $\displaystyle\frac{A(n)e + B(n)}{n!}$ 這樣的形式其中 $A(n)$ $B(n)$ 均是整數
For example a(10) =
例如$\displaystyle a(10) = \frac{328161643e 652694486}{10!}$。
328161643 e 65269448610!.
Find A(109) + B(109) and give your answer mod 77 777 777.
求解 $A({10}^9)$ + $B({10}^9)$ 並給出答案 $\bmod 77\\,777\\,777$。
# --hints--
`euler330()` should return 15955822.
`eulersNumber()` 應該返回 `15955822`
```js
assert.strictEqual(euler330(), 15955822);
assert.strictEqual(eulersNumber(), 15955822);
```
# --seed--
@ -39,12 +37,12 @@ assert.strictEqual(euler330(), 15955822);
## --seed-contents--
```js
function euler330() {
function eulersNumber() {
return true;
}
euler330();
eulersNumber();
```
# --solutions--