chore(i18n,learn): processed translations (#44805)
This commit is contained in:
@ -1,6 +1,6 @@
|
|||||||
---
|
---
|
||||||
id: 5900f4b71000cf542c50ffc9
|
id: 5900f4b71000cf542c50ffc9
|
||||||
title: 'Problem 330: Euler''s Number'
|
title: '問題 330:歐拉數'
|
||||||
challengeType: 5
|
challengeType: 5
|
||||||
forumTopicId: 301988
|
forumTopicId: 301988
|
||||||
dashedName: problem-330-eulers-number
|
dashedName: problem-330-eulers-number
|
||||||
@ -8,30 +8,28 @@ dashedName: problem-330-eulers-number
|
|||||||
|
|
||||||
# --description--
|
# --description--
|
||||||
|
|
||||||
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
|
對於所有的整數 $n$,一個無限實數序列 $a(n)$ 定義如下:
|
||||||
|
|
||||||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
|
$$ a(n) = \begin{cases} 1 & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
|
||||||
|
|
||||||
For example,a(0) = 11! + 12! + 13! + ... = e − 1 a(1) = e − 11! + 12! + 13! + ... = 2e − 3 a(2) = 2e − 31! + e − 12! + 13! + ... = 72 e − 6
|
例如,
|
||||||
|
|
||||||
with e = 2.7182818... being Euler's constant.
|
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e − 1 \\\\ & a(1) = \frac{e − 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e − 3 \\\\ & a(2) = \frac{2e − 3}{1!} + \frac{e − 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e − 6 \end{align}$$
|
||||||
|
|
||||||
It can be shown that a(n) is of the form
|
其中,$e = 2.7182818\ldots$ 是歐拉常數。
|
||||||
|
|
||||||
A(n) e + B(n)n! for integers A(n) and B(n).
|
可以看出,$a(n)$ 可以寫成 $\displaystyle\frac{A(n)e + B(n)}{n!}$ 這樣的形式,其中 $A(n)$ 和 $B(n)$ 均是整數。
|
||||||
|
|
||||||
For example a(10) =
|
例如,$\displaystyle a(10) = \frac{328161643e − 652694486}{10!}$。
|
||||||
|
|
||||||
328161643 e − 65269448610!.
|
求解 $A({10}^9)$ + $B({10}^9)$ 並給出答案 $\bmod 77\\,777\\,777$。
|
||||||
|
|
||||||
Find A(109) + B(109) and give your answer mod 77 777 777.
|
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`euler330()` should return 15955822.
|
`eulersNumber()` 應該返回 `15955822`。
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(euler330(), 15955822);
|
assert.strictEqual(eulersNumber(), 15955822);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -39,12 +37,12 @@ assert.strictEqual(euler330(), 15955822);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function euler330() {
|
function eulersNumber() {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
euler330();
|
eulersNumber();
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
---
|
---
|
||||||
id: 5900f4b71000cf542c50ffc9
|
id: 5900f4b71000cf542c50ffc9
|
||||||
title: 'Problem 330: Euler''s Number'
|
title: '问题 330:欧拉数'
|
||||||
challengeType: 5
|
challengeType: 5
|
||||||
forumTopicId: 301988
|
forumTopicId: 301988
|
||||||
dashedName: problem-330-eulers-number
|
dashedName: problem-330-eulers-number
|
||||||
@ -8,30 +8,28 @@ dashedName: problem-330-eulers-number
|
|||||||
|
|
||||||
# --description--
|
# --description--
|
||||||
|
|
||||||
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
|
对于所有的整数 $n$,一个无限实数序列 $a(n)$ 定义如下:
|
||||||
|
|
||||||
<!-- TODO Use MathJax and re-write from projecteuler.net -->
|
$$ a(n) = \begin{cases} 1 & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
|
||||||
|
|
||||||
For example,a(0) = 11! + 12! + 13! + ... = e − 1 a(1) = e − 11! + 12! + 13! + ... = 2e − 3 a(2) = 2e − 31! + e − 12! + 13! + ... = 72 e − 6
|
例如,
|
||||||
|
|
||||||
with e = 2.7182818... being Euler's constant.
|
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e − 1 \\\\ & a(1) = \frac{e − 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e − 3 \\\\ & a(2) = \frac{2e − 3}{1!} + \frac{e − 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e − 6 \end{align}$$
|
||||||
|
|
||||||
It can be shown that a(n) is of the form
|
其中,$e = 2.7182818\ldots$ 是欧拉常数。
|
||||||
|
|
||||||
A(n) e + B(n)n! for integers A(n) and B(n).
|
可以看出,$a(n)$ 可以写成 $\displaystyle\frac{A(n)e + B(n)}{n!}$ 这样的形式,其中 $A(n)$ 和 $B(n)$ 均是整数。
|
||||||
|
|
||||||
For example a(10) =
|
例如,$\displaystyle a(10) = \frac{328161643e − 652694486}{10!}$。
|
||||||
|
|
||||||
328161643 e − 65269448610!.
|
求解 $A({10}^9)$ + $B({10}^9)$ 并给出答案 $\bmod 77\\,777\\,777$。
|
||||||
|
|
||||||
Find A(109) + B(109) and give your answer mod 77 777 777.
|
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`euler330()` should return 15955822.
|
`eulersNumber()` 应该返回 `15955822`。
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(euler330(), 15955822);
|
assert.strictEqual(eulersNumber(), 15955822);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -39,12 +37,12 @@ assert.strictEqual(euler330(), 15955822);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function euler330() {
|
function eulersNumber() {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
euler330();
|
eulersNumber();
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
@ -27,6 +27,7 @@ Reescreva o código de forma que o array global `bookList` não seja alterado em
|
|||||||
`bookList` não deve ser alterado e precisa permanecer igual a `["The Hound of the Baskervilles", "On The Electrodynamics of Moving Bodies", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae"]`.
|
`bookList` não deve ser alterado e precisa permanecer igual a `["The Hound of the Baskervilles", "On The Electrodynamics of Moving Bodies", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae"]`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
|
add(bookList, "Test");
|
||||||
assert(
|
assert(
|
||||||
JSON.stringify(bookList) ===
|
JSON.stringify(bookList) ===
|
||||||
JSON.stringify([
|
JSON.stringify([
|
||||||
@ -38,11 +39,11 @@ assert(
|
|||||||
);
|
);
|
||||||
```
|
```
|
||||||
|
|
||||||
`newBookList` deve ser igual a `["The Hound of the Baskervilles", "On The Electrodynamics of Moving Bodies", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae", "A Brief History of Time"]`.
|
`add(bookList, "A Brief History of Time")` deve retornar `["The Hound of the Baskervilles", "On The Electrodynamics of Moving Bodies", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae", "A Brief History of Time"]`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(
|
assert(
|
||||||
JSON.stringify(newBookList) ===
|
JSON.stringify(add(bookList, "A Brief History of Time")) ===
|
||||||
JSON.stringify([
|
JSON.stringify([
|
||||||
'The Hound of the Baskervilles',
|
'The Hound of the Baskervilles',
|
||||||
'On The Electrodynamics of Moving Bodies',
|
'On The Electrodynamics of Moving Bodies',
|
||||||
@ -53,11 +54,11 @@ assert(
|
|||||||
);
|
);
|
||||||
```
|
```
|
||||||
|
|
||||||
`newerBookList` deve ser igual a `["The Hound of the Baskervilles", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae"]`.
|
`remove(bookList, "On The Electrodynamics of Moving Bodies")` deve retornar `["The Hound of the Baskervilles", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae"]`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(
|
assert(
|
||||||
JSON.stringify(newerBookList) ===
|
JSON.stringify(remove(bookList, 'On The Electrodynamics of Moving Bodies')) ===
|
||||||
JSON.stringify([
|
JSON.stringify([
|
||||||
'The Hound of the Baskervilles',
|
'The Hound of the Baskervilles',
|
||||||
'Philosophiæ Naturalis Principia Mathematica',
|
'Philosophiæ Naturalis Principia Mathematica',
|
||||||
@ -66,11 +67,11 @@ assert(
|
|||||||
);
|
);
|
||||||
```
|
```
|
||||||
|
|
||||||
`newestBookList` deve ser igual a `["The Hound of the Baskervilles", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae", "A Brief History of Time"]`.
|
`remove(add(bookList, "A Brief History of Time"), "On The Electrodynamics of Moving Bodies");` deve ser igual a `["The Hound of the Baskervilles", "Philosophiæ Naturalis Principia Mathematica", "Disquisitiones Arithmeticae", "A Brief History of Time"]`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(
|
assert(
|
||||||
JSON.stringify(newestBookList) ===
|
JSON.stringify(remove(add(bookList, 'A Brief History of Time'), 'On The Electrodynamics of Moving Bodies')) ===
|
||||||
JSON.stringify([
|
JSON.stringify([
|
||||||
'The Hound of the Baskervilles',
|
'The Hound of the Baskervilles',
|
||||||
'Philosophiæ Naturalis Principia Mathematica',
|
'Philosophiæ Naturalis Principia Mathematica',
|
||||||
@ -108,12 +109,6 @@ function remove(bookName) {
|
|||||||
// Change code above this line
|
// Change code above this line
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const newBookList = add(bookList, 'A Brief History of Time');
|
|
||||||
const newerBookList = remove(bookList, 'On The Electrodynamics of Moving Bodies');
|
|
||||||
const newestBookList = remove(add(bookList, 'A Brief History of Time'), 'On The Electrodynamics of Moving Bodies');
|
|
||||||
|
|
||||||
console.log(bookList);
|
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
@ -134,8 +129,4 @@ function remove(bookList, bookName) {
|
|||||||
}
|
}
|
||||||
return bookListCopy;
|
return bookListCopy;
|
||||||
}
|
}
|
||||||
|
|
||||||
const newBookList = add(bookList, 'A Brief History of Time');
|
|
||||||
const newerBookList = remove(bookList, 'On The Electrodynamics of Moving Bodies');
|
|
||||||
const newestBookList = remove(add(bookList, 'A Brief History of Time'), 'On The Electrodynamics of Moving Bodies');
|
|
||||||
```
|
```
|
||||||
|
Reference in New Issue
Block a user