chore(i18n,curriculum): update translations (#43104)

This commit is contained in:
camperbot
2021-08-05 23:31:15 +09:00
committed by GitHub
parent e389517800
commit ea9c39434b
52 changed files with 241 additions and 223 deletions

View File

@ -1,6 +1,6 @@
---
id: 59713da0a428c1a62d7db430
title: Cramer's rule
title: A regra de Cramer
challengeType: 5
forumTopicId: 302239
dashedName: cramers-rule
@ -8,43 +8,43 @@ dashedName: cramers-rule
# --description--
In [linear algebra](https://en.wikipedia.org/wiki/linear algebra "wp: linear algebra"), [Cramer's rule](https://en.wikipedia.org/wiki/Cramer's rule "wp: Cramer's rule") is an explicit formula for the solution of a [system of linear equations](https://en.wikipedia.org/wiki/system of linear equations "wp: system of linear equations") with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the vector of right hand sides of the equations.
Em [álgebra linear](https://en.wikipedia.org/wiki/linear algebra "wp: linear algebra"), a [Regra de Cramer](https://en.wikipedia.org/wiki/Cramer's rule "wp: Cramer's rule") é uma fórmula explícita para a solução de um [sistema de equações lineares](https://en.wikipedia.org/wiki/system of linear equations "wp: system of linear equations") com tantas equações quanto variáveis. Essa regra é válida sempre que o sistema tiver uma solução única. Ela exprime a solução em termos dos determinantes da matriz do coeficiente (quadrada) e de matrizes obtidas a partir dela substituindo uma coluna pelo vetor da direita das equações.
Given
Dado
$\\left\\{\\begin{matrix}a_1x + b_1y + c_1z&= {\\color{red}d_1}\\\\a_2x + b_2y + c_2z&= {\\color{red}d_2}\\\\a_3x + b_3y + c_3z&= {\\color{red}d_3}\\end{matrix}\\right.$
which in matrix format is
que no formato de matriz é
$\\begin{bmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{bmatrix}\\begin{bmatrix} x \\\\ y \\\\ z \\end{bmatrix}=\\begin{bmatrix} {\\color{red}d_1} \\\\ {\\color{red}d_2} \\\\ {\\color{red}d_3} \\end{bmatrix}.$
Then the values of $x, y$ and $z$ can be found as follows:
Então, os valores de $x, y$ e $z$ podem ser encontrados da seguinte forma:
$x = \\frac{\\begin{vmatrix} {\\color{red}d_1} & b_1 & c_1 \\\\ {\\color{red}d_2} & b_2 & c_2 \\\\ {\\color{red}d_3} & b_3 & c_3 \\end{vmatrix} } { \\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\quad y = \\frac {\\begin{vmatrix} a_1 & {\\color{red}d_1} & c_1 \\\\ a_2 & {\\color{red}d_2} & c_2 \\\\ a_3 & {\\color{red}d_3} & c_3 \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\text{ and }z = \\frac { \\begin{vmatrix} a_1 & b_1 & {\\color{red}d_1} \\\\ a_2 & b_2 & {\\color{red}d_2} \\\\ a_3 & b_3 & {\\color{red}d_3} \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix} }.$
# --instructions--
Given the following system of equations:
Dado o seguinte sistema de equações:
$\\begin{cases} 2w-x+5y+z=-3 \\\\ 3w+2x+2y-6z=-32 \\\\ w+3x+3y-z=-47 \\\\ 5w-2x-3y+3z=49 \\\\ \\end{cases}$
solve for $w$, $x$, $y$ and $z$, using Cramer's rule.
resolva para as variáveis $w$, $x$, $y$ e $z$ usando a Regra de Cramer.
# --hints--
`cramersRule` should be a function.
`cramersRule` deve ser uma função.
```js
assert(typeof cramersRule === 'function');
```
`cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])` should return `[2, -12, -4, 1]`.
`cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])` deve retornar `[2, -12, -4, 1]`.
```js
assert.deepEqual(cramersRule(matrices[0], freeTerms[0]), answers[0]);
```
`cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])` should return `[1, 1, -1]`.
`cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])` deve retornar `[1, 1, -1]`.
```js
assert.deepEqual(cramersRule(matrices[1], freeTerms[1]), answers[1]);