chore(i18n,curriculum): update translations (#43104)
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 59713da0a428c1a62d7db430
|
||||
title: Cramer's rule
|
||||
title: A regra de Cramer
|
||||
challengeType: 5
|
||||
forumTopicId: 302239
|
||||
dashedName: cramers-rule
|
||||
@ -8,43 +8,43 @@ dashedName: cramers-rule
|
||||
|
||||
# --description--
|
||||
|
||||
In [linear algebra](https://en.wikipedia.org/wiki/linear algebra "wp: linear algebra"), [Cramer's rule](https://en.wikipedia.org/wiki/Cramer's rule "wp: Cramer's rule") is an explicit formula for the solution of a [system of linear equations](https://en.wikipedia.org/wiki/system of linear equations "wp: system of linear equations") with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the vector of right hand sides of the equations.
|
||||
Em [álgebra linear](https://en.wikipedia.org/wiki/linear algebra "wp: linear algebra"), a [Regra de Cramer](https://en.wikipedia.org/wiki/Cramer's rule "wp: Cramer's rule") é uma fórmula explícita para a solução de um [sistema de equações lineares](https://en.wikipedia.org/wiki/system of linear equations "wp: system of linear equations") com tantas equações quanto variáveis. Essa regra é válida sempre que o sistema tiver uma solução única. Ela exprime a solução em termos dos determinantes da matriz do coeficiente (quadrada) e de matrizes obtidas a partir dela substituindo uma coluna pelo vetor da direita das equações.
|
||||
|
||||
Given
|
||||
Dado
|
||||
|
||||
$\\left\\{\\begin{matrix}a_1x + b_1y + c_1z&= {\\color{red}d_1}\\\\a_2x + b_2y + c_2z&= {\\color{red}d_2}\\\\a_3x + b_3y + c_3z&= {\\color{red}d_3}\\end{matrix}\\right.$
|
||||
|
||||
which in matrix format is
|
||||
que no formato de matriz é
|
||||
|
||||
$\\begin{bmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{bmatrix}\\begin{bmatrix} x \\\\ y \\\\ z \\end{bmatrix}=\\begin{bmatrix} {\\color{red}d_1} \\\\ {\\color{red}d_2} \\\\ {\\color{red}d_3} \\end{bmatrix}.$
|
||||
|
||||
Then the values of $x, y$ and $z$ can be found as follows:
|
||||
Então, os valores de $x, y$ e $z$ podem ser encontrados da seguinte forma:
|
||||
|
||||
$x = \\frac{\\begin{vmatrix} {\\color{red}d_1} & b_1 & c_1 \\\\ {\\color{red}d_2} & b_2 & c_2 \\\\ {\\color{red}d_3} & b_3 & c_3 \\end{vmatrix} } { \\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\quad y = \\frac {\\begin{vmatrix} a_1 & {\\color{red}d_1} & c_1 \\\\ a_2 & {\\color{red}d_2} & c_2 \\\\ a_3 & {\\color{red}d_3} & c_3 \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\text{ and }z = \\frac { \\begin{vmatrix} a_1 & b_1 & {\\color{red}d_1} \\\\ a_2 & b_2 & {\\color{red}d_2} \\\\ a_3 & b_3 & {\\color{red}d_3} \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix} }.$
|
||||
|
||||
# --instructions--
|
||||
|
||||
Given the following system of equations:
|
||||
Dado o seguinte sistema de equações:
|
||||
|
||||
$\\begin{cases} 2w-x+5y+z=-3 \\\\ 3w+2x+2y-6z=-32 \\\\ w+3x+3y-z=-47 \\\\ 5w-2x-3y+3z=49 \\\\ \\end{cases}$
|
||||
|
||||
solve for $w$, $x$, $y$ and $z$, using Cramer's rule.
|
||||
resolva para as variáveis $w$, $x$, $y$ e $z$ usando a Regra de Cramer.
|
||||
|
||||
# --hints--
|
||||
|
||||
`cramersRule` should be a function.
|
||||
`cramersRule` deve ser uma função.
|
||||
|
||||
```js
|
||||
assert(typeof cramersRule === 'function');
|
||||
```
|
||||
|
||||
`cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])` should return `[2, -12, -4, 1]`.
|
||||
`cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])` deve retornar `[2, -12, -4, 1]`.
|
||||
|
||||
```js
|
||||
assert.deepEqual(cramersRule(matrices[0], freeTerms[0]), answers[0]);
|
||||
```
|
||||
|
||||
`cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])` should return `[1, 1, -1]`.
|
||||
`cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])` deve retornar `[1, 1, -1]`.
|
||||
|
||||
```js
|
||||
assert.deepEqual(cramersRule(matrices[1], freeTerms[1]), answers[1]);
|
||||
|
Reference in New Issue
Block a user