From ebf657912e35d87c2fef4242772c0cd00f63b2bf Mon Sep 17 00:00:00 2001 From: Arunangshu Biswas <20253878+dotslash21@users.noreply.github.com> Date: Wed, 16 Jan 2019 02:29:28 +0530 Subject: [PATCH] Emphasized the element comparison in the example (#25506) In the example I've emphasized the element pair which are being compared. This will provide an intuitive visual cue just by looking at the example. It kind of shows the bubble effect. --- .../sorting-algorithms/bubble-sort/index.md | 24 +++++++++---------- 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/guide/english/algorithms/sorting-algorithms/bubble-sort/index.md b/guide/english/algorithms/sorting-algorithms/bubble-sort/index.md index 850d73e9fe..d139cbd844 100644 --- a/guide/english/algorithms/sorting-algorithms/bubble-sort/index.md +++ b/guide/english/algorithms/sorting-algorithms/bubble-sort/index.md @@ -10,36 +10,36 @@ This is a very slow sorting algorithm compared to algorithms like quicksort, wit ### Example: #### First Pass: -( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1. +( **5 1** 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1. -( 1 5 4 2 8 ) –> ( 1 4 5 2 8 ), Swap since 5 > 4 +( 1 **5 4** 2 8 ) –> ( 1 4 5 2 8 ), Swap since 5 > 4 -( 1 4 5 2 8 ) –> ( 1 4 2 5 8 ), Swap since 5 > 2 +( 1 4 **5 2** 8 ) –> ( 1 4 2 5 8 ), Swap since 5 > 2 -( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them. +( 1 4 2 **5 8** ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them. #### Second Pass: -( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ) +( **1 4** 2 5 8 ) –> ( 1 4 2 5 8 ) -( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2 +( 1 **4 2** 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2 -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( 1 2 **4 5** 8 ) –> ( 1 2 4 5 8 ) -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( 1 2 4 **5 8** ) –> ( 1 2 4 5 8 ) Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted. #### Third Pass: -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( **1 2** 4 5 8 ) –> ( 1 2 4 5 8 ) -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( 1 **2 4** 5 8 ) –> ( 1 2 4 5 8 ) -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( 1 2 **4 5** 8 ) –> ( 1 2 4 5 8 ) -( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) +( 1 2 4 **5 8** ) –> ( 1 2 4 5 8 ) #### Properties - Space complexity: O(1)