feat(curriculum): restore seed + solution to Chinese (#40683)

* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
This commit is contained in:
Oliver Eyton-Williams
2021-01-13 03:31:00 +01:00
committed by GitHub
parent 0095583028
commit ee1e8abd87
4163 changed files with 57505 additions and 10540 deletions

View File

@ -3,6 +3,7 @@ id: 5a23c84252665b21eecc7e77
title: 高斯消除
challengeType: 5
videoUrl: ''
dashedName: gaussian-elimination
---
# --description--
@ -109,5 +110,117 @@ assert.deepEqual(
);
```
# --seed--
## --seed-contents--
```js
function gaussianElimination(A,b) {
}
```
# --solutions--
```js
function gaussianElimination(A, b) {
// Lower Upper Decomposition
function ludcmp(A) {
// A is a matrix that we want to decompose into Lower and Upper matrices.
var d = true
var n = A.length
var idx = new Array(n) // Output vector with row permutations from partial pivoting
var vv = new Array(n) // Scaling information
for (var i=0; i<n; i++) {
var max = 0
for (var j=0; j<n; j++) {
var temp = Math.abs(A[i][j])
if (temp > max) max = temp
}
if (max == 0) return // Singular Matrix!
vv[i] = 1 / max // Scaling
}
var Acpy = new Array(n)
for (var i=0; i<n; i++) {
var Ai = A[i]
let Acpyi = new Array(Ai.length)
for (j=0; j<Ai.length; j+=1) Acpyi[j] = Ai[j]
Acpy[i] = Acpyi
}
A = Acpy
var tiny = 1e-20 // in case pivot element is zero
for (var i=0; ; i++) {
for (var j=0; j<i; j++) {
var sum = A[j][i]
for (var k=0; k<j; k++) sum -= A[j][k] * A[k][i];
A[j][i] = sum
}
var jmax = 0
var max = 0;
for (var j=i; j<n; j++) {
var sum = A[j][i]
for (var k=0; k<i; k++) sum -= A[j][k] * A[k][i];
A[j][i] = sum
var temp = vv[j] * Math.abs(sum)
if (temp >= max) {
max = temp
jmax = j
}
}
if (i <= jmax) {
for (var j=0; j<n; j++) {
var temp = A[jmax][j]
A[jmax][j] = A[i][j]
A[i][j] = temp
}
d = !d;
vv[jmax] = vv[i]
}
idx[i] = jmax;
if (i == n-1) break;
var temp = A[i][i]
if (temp == 0) A[i][i] = temp = tiny
temp = 1 / temp
for (var j=i+1; j<n; j++) A[j][i] *= temp
}
return {A:A, idx:idx, d:d}
}
// Lower Upper Back Substitution
function lubksb(lu, b) {
// solves the set of n linear equations A*x = b.
// lu is the object containing A, idx and d as determined by the routine ludcmp.
var A = lu.A
var idx = lu.idx
var n = idx.length
var bcpy = new Array(n)
for (var i=0; i<b.length; i+=1) bcpy[i] = b[i]
b = bcpy
for (var ii=-1, i=0; i<n; i++) {
var ix = idx[i]
var sum = b[ix]
b[ix] = b[i]
if (ii > -1)
for (var j=ii; j<i; j++) sum -= A[i][j] * b[j]
else if (sum)
ii = i
b[i] = sum
}
for (var i=n-1; i>=0; i--) {
var sum = b[i]
for (var j=i+1; j<n; j++) sum -= A[i][j] * b[j]
b[i] = sum / A[i][i]
}
return b // solution vector x
}
var lu = ludcmp(A)
if (lu === undefined) return // Singular Matrix!
return lubksb(lu, b)
}
```