feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
This commit is contained in:
committed by
GitHub
parent
0095583028
commit
ee1e8abd87
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da6
|
||||
challengeType: 11
|
||||
videoId: LMNub5frQi4
|
||||
dashedName: conclusion
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ have a deep understanding of many different frameworks.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d99
|
||||
challengeType: 11
|
||||
videoId: eCATNvwraXg
|
||||
dashedName: convolutional-neural-networks-evaluating-the-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ Using your test data to retrain the model.
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9a
|
||||
challengeType: 11
|
||||
videoId: h1XUt1AgIOI
|
||||
dashedName: convolutional-neural-networks-picking-a-pretrained-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -45,8 +46,3 @@ C: `False`
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d97
|
||||
challengeType: 11
|
||||
videoId: LrdmcQpTyLw
|
||||
dashedName: convolutional-neural-networks-the-convolutional-layer
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ Input size, input padding, and stride.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d96
|
||||
challengeType: 11
|
||||
videoId: _1kTP7uoU9E
|
||||
dashedName: convolutional-neural-networks
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ scan through the entire input a little at a time and learn local patterns.
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8e
|
||||
challengeType: 11
|
||||
videoId: 5wHw8BTd2ZQ
|
||||
dashedName: core-learning-algorithms-building-the-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ What kind of estimator/model does TensorFlow recommend using for classification?
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8d
|
||||
challengeType: 11
|
||||
videoId: qFF7ZQNvK9E
|
||||
dashedName: core-learning-algorithms-classification
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ None of the above.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8f
|
||||
challengeType: 11
|
||||
videoId: 8sqIaHc9Cz4
|
||||
dashedName: core-learning-algorithms-clustering
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -34,8 +35,3 @@ Reassign each K point to the closest K centeroid.
|
||||
|
||||
4
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d90
|
||||
challengeType: 11
|
||||
videoId: IZg24y4wEPY
|
||||
dashedName: core-learning-algorithms-hidden-markov-models
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ It separates data points into separate categories.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8c
|
||||
challengeType: 11
|
||||
videoId: _cEwvqVoBhI
|
||||
dashedName: core-learning-algorithms-the-training-process
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ The number of elements you feed to the model at once.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8b
|
||||
challengeType: 11
|
||||
videoId: wz9J1slsi7I
|
||||
dashedName: core-learning-algorithms-training-and-testing-data
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ Any data that is represented numerically.
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d91
|
||||
challengeType: 11
|
||||
videoId: fYAYvLUawnc
|
||||
dashedName: core-learning-algorithms-using-probabilities-to-make-predictions
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ What TensorFlow module should you import to implement `.HiddenMarkovModel()`?
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d8a
|
||||
challengeType: 11
|
||||
videoId: u85IOSsJsPI
|
||||
dashedName: core-learning-algorithms-working-with-data
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ By default, shows the first five rows or entries in a data frame.
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d89
|
||||
challengeType: 11
|
||||
videoId: u5lZURgcWnU
|
||||
dashedName: core-learning-algorithms
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -32,8 +33,3 @@ Linear regression
|
||||
|
||||
4
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d98
|
||||
challengeType: 11
|
||||
videoId: kfv0K8MtkIc
|
||||
dashedName: creating-a-convolutional-neural-network
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -48,8 +49,3 @@ C: `MaxPooling2D`
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d87
|
||||
challengeType: 11
|
||||
videoId: KwL1qTR5MT8
|
||||
dashedName: introduction-machine-learning-fundamentals
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ Machine learning is a subset of artificial intelligence.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d88
|
||||
challengeType: 11
|
||||
videoId: r9hRyGGjOgQ
|
||||
dashedName: introduction-to-tensorflow
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -34,8 +35,3 @@ Constant
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da1
|
||||
challengeType: 11
|
||||
videoId: 32WBFS7lfsw
|
||||
dashedName: natural-language-processing-with-rnns-building-the-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -58,8 +59,3 @@ D: `return model`
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da0
|
||||
challengeType: 11
|
||||
videoId: j5xsxjq_Xk8
|
||||
dashedName: natural-language-processing-with-rnns-create-a-play-generator
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -36,8 +37,3 @@ B: `from_generator`
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9f
|
||||
challengeType: 11
|
||||
videoId: WO1hINnBj20
|
||||
dashedName: natural-language-processing-with-rnns-making-predictions
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ assign random values between 0 and the maximum number of vocabulary in your data
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9c
|
||||
challengeType: 11
|
||||
videoId: mUU9YXOFbZg
|
||||
dashedName: natural-language-processing-with-rnns-part-2
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ a vectorized representation of words in a given document that places words with
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9d
|
||||
challengeType: 11
|
||||
videoId: bX5681NPOcA
|
||||
dashedName: natural-language-processing-with-rnns-recurring-neural-networks
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -30,8 +31,3 @@ What is true about Recurrent Neural Networks?
|
||||
|
||||
4
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9e
|
||||
challengeType: 11
|
||||
videoId: lYeLtu8Nq7c
|
||||
dashedName: natural-language-processing-with-rnns-sentiment-analysis
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -46,8 +47,3 @@ C: `LSTM`
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da2
|
||||
challengeType: 11
|
||||
videoId: hEUiK7j9UI8
|
||||
dashedName: natural-language-processing-with-rnns-training-the-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -50,8 +51,3 @@ C: `checkpoint_callback`
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d9b
|
||||
challengeType: 11
|
||||
videoId: ZyCaF5S-lKg
|
||||
dashedName: natural-language-processing-with-rnns
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ is focused on translating computer languages into natural/human languages.
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d93
|
||||
challengeType: 11
|
||||
videoId: S45tqW6BqRs
|
||||
dashedName: neural-networks-activation-functions
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ Sigmoid
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d95
|
||||
challengeType: 11
|
||||
videoId: K8bz1bmOCTw
|
||||
dashedName: neural-networks-creating-a-model
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -46,8 +47,3 @@ C: `dense`
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d94
|
||||
challengeType: 11
|
||||
videoId: hdOtRPQe1o4
|
||||
dashedName: neural-networks-optimizers
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ A function that reduces the time a model needs to train.
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72d92
|
||||
challengeType: 11
|
||||
videoId: uisdfrNrZW4
|
||||
dashedName: neural-networks-with-tensorflow
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ all the neurons in the current layer are connected to every neuron in the previo
|
||||
|
||||
3
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da5
|
||||
challengeType: 11
|
||||
videoId: RBBSNta234s
|
||||
dashedName: reinforcement-learning-with-q-learning-example
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -42,8 +43,3 @@ C: `next_state`
|
||||
|
||||
1
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da4
|
||||
challengeType: 11
|
||||
videoId: DX7hJuaUZ7o
|
||||
dashedName: reinforcement-learning-with-q-learning-part-2
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -22,8 +23,3 @@ The agent will always try to maximize its reward for the current state/action, l
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
id: 5e8f2f13c4cdbe86b5c72da3
|
||||
challengeType: 11
|
||||
videoId: Cf7DSU0gVb4
|
||||
dashedName: reinforcement-learning-with-q-learning
|
||||
---
|
||||
|
||||
# --question--
|
||||
@ -26,8 +27,3 @@ habitat, agent, state, action, and punishment.
|
||||
|
||||
2
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
|
Reference in New Issue
Block a user