diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-76-counting-summations.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-76-counting-summations.md
index dded902e52..bbc9618245 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-76-counting-summations.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-76-counting-summations.md
@@ -16,23 +16,41 @@ It is possible to write five as a sum in exactly six different ways:
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
- 1 + 1 + 1 + 1 + 1
+ 1 + 1 + 1 + 1 + 1
-How many different ways can one hundred be written as a sum of at least two positive integers?
+How many different ways can `n` be written as a sum of at least two positive integers?
# --hints--
-`countingSummations()` should return a number.
+`countingSummations(5)` should return a number.
```js
-assert(typeof countingSummations() === 'number');
+assert(typeof countingSummations(5) === 'number');
```
-`countingSummations()` should return 190569291.
+`countingSummations(5)` should return `6`.
```js
-assert.strictEqual(countingSummations(), 190569291);
+assert.strictEqual(countingSummations(5), 6);
+```
+
+`countingSummations(20)` should return `626`.
+
+```js
+assert.strictEqual(countingSummations(20), 626);
+```
+
+`countingSummations(50)` should return `204225`.
+
+```js
+assert.strictEqual(countingSummations(50), 204225);
+```
+
+`countingSummations(100)` should return `190569291`.
+
+```js
+assert.strictEqual(countingSummations(100), 190569291);
```
# --seed--
@@ -40,16 +58,26 @@ assert.strictEqual(countingSummations(), 190569291);
## --seed-contents--
```js
-function countingSummations() {
+function countingSummations(n) {
return true;
}
-countingSummations();
+countingSummations(5);
```
# --solutions--
```js
-// solution required
+function countingSummations(n) {
+ const combinations = new Array(n + 1).fill(0);
+ combinations[0] = 1;
+
+ for (let i = 1; i < n; i++) {
+ for (let j = i; j < n + 1; j++) {
+ combinations[j] += combinations[j - i];
+ }
+ }
+ return combinations[n];
+}
```