feat: enable new langs (#42491)

Enable italian and portuguese
This commit is contained in:
Nicholas Carrigan (he/him)
2021-06-15 00:49:18 -07:00
committed by GitHub
parent d8d6d20793
commit f25e3e69f8
3301 changed files with 423168 additions and 6 deletions

View File

@ -0,0 +1,46 @@
---
id: 5900f5081000cf542c510019
title: 'Problem 411: Uphill paths'
challengeType: 5
forumTopicId: 302080
dashedName: problem-411-uphill-paths
---
# --description--
Let n be a positive integer. Suppose there are stations at the coordinates (x, y) = (2i mod n, 3i mod n) for 0 ≤ i ≤ 2n. We will consider stations with the same coordinates as the same station.
We wish to form a path from (0, 0) to (n, n) such that the x and y coordinates never decrease. Let S(n) be the maximum number of stations such a path can pass through.
For example, if n = 22, there are 11 distinct stations, and a valid path can pass through at most 5 stations. Therefore, S(22) = 5. The case is illustrated below, with an example of an optimal path:
It can also be verified that S(123) = 14 and S(10000) = 48.
Find ∑ S(k5) for 1 ≤ k ≤ 30.
# --hints--
`euler411()` should return 9936352.
```js
assert.strictEqual(euler411(), 9936352);
```
# --seed--
## --seed-contents--
```js
function euler411() {
return true;
}
euler411();
```
# --solutions--
```js
// solution required
```