chore(i18n,learn): processed translations (#44797)
This commit is contained in:
@ -20,7 +20,7 @@ dashedName: natural-language-processing-with-rnns-sentiment-analysis
|
|||||||
model = __A__.keras.Sequential([
|
model = __A__.keras.Sequential([
|
||||||
__A__.keras.layers.__B__(88584, 32),
|
__A__.keras.layers.__B__(88584, 32),
|
||||||
__A__.keras.layers.__C__(32),
|
__A__.keras.layers.__C__(32),
|
||||||
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
__A__.keras.layers.Dense(1, activation='sigmoid')
|
||||||
])
|
])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ dashedName: natural-language-processing-with-rnns-sentiment-analysis
|
|||||||
model = __A__.keras.Sequential([
|
model = __A__.keras.Sequential([
|
||||||
__A__.keras.layers.__B__(88584, 32),
|
__A__.keras.layers.__B__(88584, 32),
|
||||||
__A__.keras.layers.__C__(32),
|
__A__.keras.layers.__C__(32),
|
||||||
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
__A__.keras.layers.Dense(1, activation='sigmoid')
|
||||||
])
|
])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ Compila gli spazi vuoti qui sotto per creare il modello per la RNN:
|
|||||||
model = __A__.keras.Sequential([
|
model = __A__.keras.Sequential([
|
||||||
__A__.keras.layers.__B__(88584, 32),
|
__A__.keras.layers.__B__(88584, 32),
|
||||||
__A__.keras.layers.__C__(32),
|
__A__.keras.layers.__C__(32),
|
||||||
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
__A__.keras.layers.Dense(1, activation='sigmoid')
|
||||||
])
|
])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ Preencha as lacunas abaixo para criar o modelo para a RNN:
|
|||||||
model = __A__.keras.Sequential([
|
model = __A__.keras.Sequential([
|
||||||
__A__.keras.layers.__B__(88584, 32),
|
__A__.keras.layers.__B__(88584, 32),
|
||||||
__A__.keras.layers.__C__(32),
|
__A__.keras.layers.__C__(32),
|
||||||
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
__A__.keras.layers.Dense(1, activation='sigmoid')
|
||||||
])
|
])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ dashedName: natural-language-processing-with-rnns-sentiment-analysis
|
|||||||
model = __A__.keras.Sequential([
|
model = __A__.keras.Sequential([
|
||||||
__A__.keras.layers.__B__(88584, 32),
|
__A__.keras.layers.__B__(88584, 32),
|
||||||
__A__.keras.layers.__C__(32),
|
__A__.keras.layers.__C__(32),
|
||||||
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
__A__.keras.layers.Dense(1, activation='sigmoid')
|
||||||
])
|
])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user