--- id: 5900f4021000cf542c50ff13 title: '問題 149: 和が最大である部分列を探索する' challengeType: 5 forumTopicId: 301778 dashedName: problem-149-searching-for-a-maximum-sum-subsequence --- # --description-- 下表において、任意の方向 (縦、横、対角、反対角) に隣り合う数の最大和が 16 (= 8 + 7 + 1) であることは簡単に確認できます。 $$\begin{array}{|r|r|r|r|} \hline −2 & 5 & 3 & 2 \\\\ \hline 9 & −6 & 5 & 1 \\\\ \hline 3 & 2 & 7 & 3 \\\\ \hline −1 & 8 & −4 & 8 \\\\ \hline \end{array}$$ ここでは、この探索を巨大な規模で繰り返します。 まず、「ラグ付きフィボナッチ法」と呼ばれる特定の形式を使用して、400 万個の疑似乱数を生成します。 $1 ≤ k ≤ 55$ のとき、$s_k = (100003 − 200003k + 300007{k}^3) \\ (mod\\ 1000000) − 500000$ です。 $56 ≤ k ≤ 4000000$ のとき、$s_k = (s_{k − 24} + s_{k − 55} + 1000000) \\ (mod\\ 1000000) − 500000$ です。 したがって、$s_{10} = −393027$ および $s_{100} = 86613$ となります。 次に、項 $s$ は、最初の 2000 個の数を 1 行目 (順番に)、次の 2000 個の数を 2 行目に、それ以降も同様に 2000 x 2000 の表の中に配置されます。 最後に、任意の方向 (縦、横、対角、反対角) に隣接する要素 (個数は任意) の最大和を求めなさい。 # --hints-- `maximumSubSequence()` は `52852124` を返す必要があります。 ```js assert.strictEqual(maximumSubSequence(), 52852124); ``` # --seed-- ## --seed-contents-- ```js function maximumSubSequence() { return true; } maximumSubSequence(); ``` # --solutions-- ```js // solution required ```