--- id: 5900f4181000cf542c50ff2a title: >- 問題 171: 各位の平方和が平方数となる数を求める challengeType: 5 forumTopicId: 301806 dashedName: >- problem-171-finding-numbers-for-which-the-sum-of-the-squares-of-the-digits-is-a-square --- # --description-- 正の整数 $n$ について、$n$ の各位 (10 進数) の平方和を $f(n)$ とします。下に例を示します。 $$\begin{align} & f(3) = 3^2 = 9 \\\\ & f(25) = 2^2 + 5^2 = 4 + 25 = 29 \\\\ & f(442) = 4^2 + 4^2 + 2^2 = 16 + 16 + 4 = 36 \\\\ \end{align}$$ $0 < n < {10}^{20}$ のとき、$f(n)$ が完全平方数になるような $n$ の総和の下位 9 桁を求めなさい。 # --hints-- `lastDigitsSumOfPerfectSquare()` は `142989277` を返す必要があります。 ```js assert.strictEqual(lastDigitsSumOfPerfectSquare(), 142989277); ``` # --seed-- ## --seed-contents-- ```js function lastDigitsSumOfPerfectSquare() { return true; } lastDigitsSumOfPerfectSquare(); ``` # --solutions-- ```js // solution required ```