--- id: 5900f4d91000cf542c50ffeb title: '問題 363: ベジェ曲線' challengeType: 5 forumTopicId: 302024 dashedName: problem-363-bzier-curves --- # --description-- 三次ベジェ曲線は $P_0$, $P_1$, $P_2$, $P_3$ の 4 点で定義されます。 この曲線は次のように形成されます。 ベジェ曲線の形成 線分 $P_0P_1$, $P_1P_2$, $P_2P_3$ 上に点 $Q_0$,$Q_1$, $Q_2$ が、区間 [0,1] 内の $t$ について $\frac{P_0Q_0}{P_0P_1} = \frac{P_1Q_1}{P_1P_2} = \frac{P_2Q_2}{P_2P_3} = t$ となるように描かれます。 線分 $Q_0Q_1$ と $Q_1Q_2$ 上に点 $R_0$ と $R_1$ が、上と同じ $t$ の値について $\frac{Q_0R_0}{Q_0Q_1} = \frac{Q_1R_1}{Q_1Q_2} = t$ となるように描かれます。 線分 $R_0R_1$ 上に点 $B$ が、上と同じ $t$ の値について $\frac{R_0B}{R_0R_1} = t$ となるように描かれます。 点 $P_0$, $P_1$, $P_2$, $P_3$ によって定義されるベジェ曲線は、$Q_0$ が線分 $P_0P_1$ 上の考えられるすべての位置を取る際の $B$ の軌跡です。 (すべての点において $t$ の値が同じであることに注意してください。) 作成された図を見れば分かるとおり、ベジェ曲線は $P_0$ において線分 $P_0P_1$ と接し、そして $P_3$ において線分 $P_2P_3$ と接しています。 $P_0 = (1, 0)$, $P_1 = (1, v)$, $P_2 = (v. 1)$, $P_3 = (0, 1)$ で定義される三次ベジェ曲線は、4 分の 1 円弧に近付けるために使用されます。 値 $v > 0$ は、直線 $OP_0$, $OP_3$ と曲線で囲まれた部分の面積が $\frac{π}{4}$ (4 分の 1 円弧) と等しくなるように選択されます 。 曲線の長さは 4 分の 1 円弧の長さと何パーセント異なりますか。 つまり、$L$ を曲線の長さとすると、$100 × \displaystyle\frac{L − \frac{π}{2}}{\frac{π}{2}}$ を計算します。 回答は、四捨五入して小数第 10 位まで示すこと。 # --hints-- `bezierCurves()` は `0.0000372091` を返す必要があります。 ```js assert.strictEqual(bezierCurves(), 0.0000372091); ``` # --seed-- ## --seed-contents-- ```js function bezierCurves() { return true; } bezierCurves(); ``` # --solutions-- ```js // solution required ```