--- id: 5900f3e61000cf542c50fef9 title: 'Problem 122: Efficient exponentiation' challengeType: 5 forumTopicId: 301749 dashedName: problem-122-efficient-exponentiation --- # --description-- The most naive way of computing $n^{15}$ requires fourteen multiplications: $$n × n × \ldots × n = n^{15}$$ But using a "binary" method you can compute it in six multiplications: $$\begin{align} & n × n = n^2\\\\ & n^2 × n^2 = n^4\\\\ & n^4 × n^4 = n^8\\\\ & n^8 × n^4 = n^{12}\\\\ & n^{12} × n^2 = n^{14}\\\\ & n^{14} × n = n^{15} \end{align}$$ However it is yet possible to compute it in only five multiplications: $$\begin{align} & n × n = n^2\\\\ & n^2 × n = n^3\\\\ & n^3 × n^3 = n^6\\\\ & n^6 × n^6 = n^{12}\\\\ & n^{12} × n^3 = n^{15} \end{align}$$ We shall define $m(k)$ to be the minimum number of multiplications to compute $n^k$; for example $m(15) = 5$. For $1 ≤ k ≤ 200$, find $\sum{m(k)}$. # --hints-- `efficientExponentation()` should return `1582`. ```js assert.strictEqual(efficientExponentation(), 1582); ``` # --seed-- ## --seed-contents-- ```js function efficientExponentation() { return true; } efficientExponentation(); ``` # --solutions-- ```js // solution required ```