--- id: 5900f3e71000cf542c50fefa title: 'Problem 123: Prime square remainders' challengeType: 5 forumTopicId: 301750 dashedName: problem-123-prime-square-remainders --- # --description-- Let $p_n$ be the $n$th prime: 2, 3, 5, 7, 11, ..., and let $r$ be the remainder when ${(p_n−1)}^n + {(p_n+1)}^n$ is divided by ${p_n}^2$. For example, when $n = 3, p_3 = 5$, and $4^3 + 6^3 = 280 ≡ 5\\ mod\\ 25$. The least value of $n$ for which the remainder first exceeds $10^9$ is 7037. Find the least value of $n$ for which the remainder first exceeds $10^{10}$. # --hints-- `primeSquareRemainders()` should return `21035`. ```js assert.strictEqual(primeSquareRemainders(), 21035); ``` # --seed-- ## --seed-contents-- ```js function primeSquareRemainders() { return true; } primeSquareRemainders(); ``` # --solutions-- ```js // solution required ```