--- id: 5900f3e81000cf542c50fefb title: 'Problem 124: Ordered radicals' challengeType: 5 forumTopicId: 301751 dashedName: problem-124-ordered-radicals --- # --description-- The radical of $n$, $rad(n)$, is the product of the distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$. If we calculate $rad(n)$ for $1 ≤ n ≤ 10$, then sort them on $rad(n)$, and sorting on $n$ if the radical values are equal, we get:
$Unsorted$ $Sorted$
$n$ $rad(n)$ $n$ $rad(n)$ $k$
1 1 1 1 1
2 2 2 2 2
3 3 4 2 3
4 2 8 2 4
5 5 3 3 5
6 6 9 3 6
7 7 5 5 7
8 2 6 6 8
9 3 7 7 9
10 10 10 10 10

Let $E(k)$ be the $k$th element in the sorted $n$ column; for example, $E(4) = 8$ and $E(6) = 9$. If $rad(n)$ is sorted for $1 ≤ n ≤ 100000$, find $E(10000)$. # --hints-- `orderedRadicals()` should return `21417`. ```js assert.strictEqual(orderedRadicals(), 21417); ``` # --seed-- ## --seed-contents-- ```js function orderedRadicals() { return true; } orderedRadicals(); ``` # --solutions-- ```js // solution required ```