--- id: 5900f3ef1000cf542c50ff01 title: 'Problem 129: Repunit divisibility' challengeType: 5 forumTopicId: 301756 dashedName: problem-129-repunit-divisibility --- # --description-- A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length $k$; for example, $R(6) = 111111$. Given that $n$ is a positive integer and $GCD(n, 10) = 1$, it can be shown that there always exists a value, $k$, for which $R(k)$ is divisible by $n$, and let $A(n)$ be the least such value of $k$; for example, $A(7) = 6$ and $A(41) = 5$. The least value of $n$ for which $A(n)$ first exceeds ten is 17. Find the least value of $n$ for which $A(n)$ first exceeds one-million. # --hints-- `repunitDivisibility()` should return `1000023`. ```js assert.strictEqual(repunitDivisibility(), 1000023); ``` # --seed-- ## --seed-contents-- ```js function repunitDivisibility() { return true; } repunitDivisibility(); ``` # --solutions-- ```js // solution required ```