--- id: 5900f4411000cf542c50ff53 title: 'Problem 212: Combined Volume of Cuboids' challengeType: 5 forumTopicId: 301854 dashedName: problem-212-combined-volume-of-cuboids --- # --description-- An axis-aligned cuboid, specified by parameters $\{ (x_0,y_0,z_0), (dx,dy,dz) \}$, consists of all points ($X$,$Y$,$Z$) such that $x_0 ≤ X ≤ x_0 + dx$, $y_0 ≤ Y ≤ y_0 + dy$ and $z_0 ≤ Z ≤ z_0 + dz$. The volume of the cuboid is the product, $dx × dy × dz$. The combined volume of a collection of cuboids is the volume of their union and will be less than the sum of the individual volumes if any cuboids overlap. Let $C_1, \ldots, C_{50000}$ be a collection of 50000 axis-aligned cuboids such that $C_n$ has parameters $$\begin{align} & x_0 = S_{6n - 5} \\; \text{modulo} \\; 10000 \\\\ & y_0 = S_{6n - 4} \\; \text{modulo} \\; 10000 \\\\ & z_0 = S_{6n - 3} \\; \text{modulo} \\; 10000 \\\\ & dx = 1 + (S_{6n - 2} \\; \text{modulo} \\; 399) \\\\ & dy = 1 + (S_{6n - 1} \\; \text{modulo} \\; 399) \\\\ & dz = 1 + (S_{6n} \\; \text{modulo} \\; 399) \\\\ \end{align}$$ where $S_1, \ldots, S_{300000}$ come from the "Lagged Fibonacci Generator": For $1 ≤ k ≤ 55$, $S_k = [100003 - 200003k + 300007k^3] \\; (modulo \\; 1000000)$ For $56 ≤ k$, $S_k = [S_{k - 24} + S_{k - 55}] \\; (modulo \\; 1000000)$ Thus, $C_1$ has parameters $\{(7,53,183), (94,369,56)\}$, $C_2$ has parameters $\{(2383,3563,5079), (42,212,344)\}$, and so on. The combined volume of the first 100 cuboids, $C_1, \ldots, C_{100}$, is 723581599. What is the combined volume of all 50000 cuboids, $C_1, \ldots, C_{50000}$? # --hints-- `combinedValueOfCuboids()` should return `328968937309`. ```js assert.strictEqual(combinedValueOfCuboids(), 328968937309); ``` # --seed-- ## --seed-contents-- ```js function combinedValueOfCuboids() { return true; } combinedValueOfCuboids(); ``` # --solutions-- ```js // solution required ```