--- id: 5900f4511000cf542c50ff63 title: 'Problem 228: Minkowski Sums' challengeType: 5 forumTopicId: 301871 dashedName: problem-228-minkowski-sums --- # --description-- Let $S_n$ be the regular $n$-sided polygon – or shape – whose vertices $v_k (k = 1, 2, \ldots, n)$ have coordinates: $$\begin{align} & x_k = cos(\frac{2k - 1}{n} × 180°) \\\\ & y_k = sin(\frac{2k - 1}{n} × 180°) \end{align}$$ Each $S_n$ is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior. The Minkowski sum, $S + T$, of two shapes $S$ and $T$ is the result of adding every point in $S$ to every point in $T$, where point addition is performed coordinate-wise: $(u, v) + (x, y) = (u + x, v + y)$. For example, the sum of $S_3$ and $S_4$ is the six-sided shape shown in pink below: image showing S_3, S_4 and S_3 + S_4 How many sides does $S_{1864} + S_{1865} + \ldots + S_{1909}$ have? # --hints-- `minkowskiSums()` should return `86226`. ```js assert.strictEqual(minkowskiSums(), 86226); ``` # --seed-- ## --seed-contents-- ```js function minkowskiSums() { return true; } minkowskiSums(); ``` # --solutions-- ```js // solution required ```