--- id: 5900f4601000cf542c50ff73 title: 'Problem 243: Resilience' challengeType: 5 forumTopicId: 301890 dashedName: problem-243-resilience --- # --description-- A positive fraction whose numerator is less than its denominator is called a proper fraction. For any denominator, $d$, there will be $d−1$ proper fractions; for example, with $d = 12$: $$\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}$$ We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, $R(d)$, to be the ratio of its proper fractions that are resilient; for example, $R(12) = \frac{4}{11}$. In fact, $d = 12$ is the smallest denominator having a resilience $R(d) < \frac{4}{10}$. Find the smallest denominator $d$, having a resilience $R(d) < \frac{15\\,499}{94\\,744}$. # --hints-- `resilience()` should return `892371480`. ```js assert.strictEqual(resilience(), 892371480); ``` # --seed-- ## --seed-contents-- ```js function resilience() { return true; } resilience(); ``` # --solutions-- ```js // solution required ```