--- id: 5900f4621000cf542c50ff74 title: 'Problem 245: Coresilience' challengeType: 5 forumTopicId: 301892 dashedName: problem-245-coresilience --- # --description-- We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, $R(d)$, to be the ratio of its proper fractions that are resilient; for example, $R(12) = \frac{4}{11}$. The resilience of a number $d > 1$ is then $\frac{φ(d)}{d − 1}$ , where $φ$ is Euler's totient function. We further define the coresilience of a number $n > 1$ as $C(n) = \frac{n − φ(n)}{n − 1}$. The coresilience of a prime $p$ is $C(p) = \frac{1}{p − 1}$. Find the sum of all composite integers $1 < n ≤ 2 × {10}^{11}$, for which $C(n)$ is a unit fraction. # --hints-- `coresilience()` should return `288084712410001`. ```js assert.strictEqual(coresilience(), 288084712410001); ``` # --seed-- ## --seed-contents-- ```js function coresilience() { return true; } coresilience(); ``` # --solutions-- ```js // solution required ```