--- id: 5900f4791000cf542c50ff8c title: 'Problem 269: Polynomials with at least one integer root' challengeType: 5 forumTopicId: 301918 dashedName: problem-269-polynomials-with-at-least-one-integer-root --- # --description-- A root or zero of a polynomial $P(x)$ is a solution to the equation $P(x) = 0$. Define $P_n$ as the polynomial whose coefficients are the digits of $n$. For example, $P_{5703}(x) = 5x^3 + 7x^2 + 3$. We can see that: - $P_n(0)$ is the last digit of $n$, - $P_n(1)$ is the sum of the digits of $n$, - $Pn(10)$ is $n$ itself. Define $Z(k)$ as the number of positive integers, $n$, not exceeding $k$ for which the polynomial $P_n$ has at least one integer root. It can be verified that $Z(100\\,000)$ is 14696. What is $Z({10}^{16})$? # --hints-- `polynomialsWithOneIntegerRoot()` should return `1311109198529286`. ```js assert.strictEqual(polynomialsWithOneIntegerRoot(), 1311109198529286); ``` # --seed-- ## --seed-contents-- ```js function polynomialsWithOneIntegerRoot() { return true; } polynomialsWithOneIntegerRoot(); ``` # --solutions-- ```js // solution required ```