--- id: 5900f47d1000cf542c50ff8f title: 'Problem 272: Modular Cubes, part 2' challengeType: 5 forumTopicId: 301922 dashedName: problem-272-modular-cubes-part-2 --- # --description-- For a positive number $n$, define $C(n)$ as the number of the integers $x$, for which $1 < x < n$ and $x^3 \equiv 1\bmod n$. When $n = 91$, there are 8 possible values for $x$, namely: 9, 16, 22, 29, 53, 74, 79, 81. Thus, $C(91) = 8$. Find the sum of the positive numbers $n ≤ {10}^{11}$ for which $C(n)=242$. # --hints-- `modularCubesTwo()` should return `8495585919506151000`. ```js assert.strictEqual(modularCubesTwo(), 8495585919506151000); ``` # --seed-- ## --seed-contents-- ```js function modularCubesTwo() { return true; } modularCubesTwo(); ``` # --solutions-- ```js // solution required ```